IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5718-d438715.html
   My bibliography  Save this article

An Optimal Energy Optimization Strategy for Smart Grid Integrated with Renewable Energy Sources and Demand Response Programs

Author

Listed:
  • Kalim Ullah

    (Department of Electrical Engineering, University of Engineering and Technology, Mardan 23200, Pakistan)

  • Sajjad Ali

    (Department of Telecommunication Engineering, University of Engineering and Technology, Mardan 23200, Pakistan)

  • Taimoor Ahmad Khan

    (Department of Electrical Engineering, University of Engineering and Technology, Mardan 23200, Pakistan)

  • Imran Khan

    (Department of Electrical Engineering, University of Engineering and Technology, Mardan 23200, Pakistan)

  • Sadaqat Jan

    (Department of Computer Software Engineering, University of Engineering and Technology, Mardan 23200, Pakistan)

  • Ibrar Ali Shah

    (Department of Computer Software Engineering, University of Engineering and Technology, Mardan 23200, Pakistan)

  • Ghulam Hafeez

    (Department of Electrical Engineering, University of Engineering and Technology, Mardan 23200, Pakistan
    Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad Campus, Islamabad 44000, Pakistan)

Abstract

An energy optimization strategy is proposed to minimize operation cost and carbon emission with and without demand response programs (DRPs) in the smart grid (SG) integrated with renewable energy sources (RESs). To achieve optimized results, probability density function (PDF) is proposed to predict the behavior of wind and solar energy sources. To overcome uncertainty in power produced by wind and solar RESs, DRPs are proposed with the involvement of residential, commercial, and industrial consumers. In this model, to execute DRPs, we introduced incentive-based payment as price offered packages. Simulations are divided into three steps for optimization of operation cost and carbon emission: (i) solving optimization problem using multi-objective genetic algorithm (MOGA), (ii) optimization of operating cost and carbon emission without DRPs, and (iii) optimization of operating cost and carbon emission with DRPs. To endorse the applicability of the proposed optimization model based on MOGA, a smart sample grid is employed serving residential, commercial, and industrial consumers. In addition, the proposed optimization model based on MOGA is compared to the existing model based on multi-objective particle swarm optimization (MOPSO) algorithm in terms of operation cost and carbon emission. The proposed optimization model based on MOGA outperforms the existing model based on the MOPSO algorithm in terms of operation cost and carbon emission. Experimental results show that the operation cost and carbon emission are reduced by 24% and 28% through MOGA with and without the participation of DRPs, respectively.

Suggested Citation

  • Kalim Ullah & Sajjad Ali & Taimoor Ahmad Khan & Imran Khan & Sadaqat Jan & Ibrar Ali Shah & Ghulam Hafeez, 2020. "An Optimal Energy Optimization Strategy for Smart Grid Integrated with Renewable Energy Sources and Demand Response Programs," Energies, MDPI, vol. 13(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5718-:d:438715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahimi, Ehsan & Rabiee, Abdorreza & Aghaei, Jamshid & Muttaqi, Kashem M. & Esmaeel Nezhad, Ali, 2013. "On the management of wind power intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 643-653.
    2. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    3. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    4. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    5. Youcef Ettoumi, F. & Mefti, A. & Adane, A. & Bouroubi, M.Y., 2002. "Statistical analysis of solar measurements in Algeria using beta distributions," Renewable Energy, Elsevier, vol. 26(1), pages 47-67.
    6. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    7. Mazzeo, Domenico & Oliveti, Giuseppe & Labonia, Ester, 2018. "Estimation of wind speed probability density function using a mixture of two truncated normal distributions," Renewable Energy, Elsevier, vol. 115(C), pages 1260-1280.
    8. Mirzaei, Mohammad Javad & Kazemi, Ahad & Homaee, Omid, 2014. "Real-world based approach for optimal management of electric vehicles in an intelligent parking lot considering simultaneous satisfaction of vehicle owners and parking operator," Energy, Elsevier, vol. 76(C), pages 345-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatima Zahra Zahraoui & Mehdi Et-taoussi & Houssam Eddine Chakir & Hamid Ouadi & Brahim Elbhiri, 2023. "Bellman–Genetic Hybrid Algorithm Optimization in Rural Area Microgrids," Energies, MDPI, vol. 16(19), pages 1-26, September.
    2. Vasileios M. Laitsos & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2021. "An Incentive-Based Implementation of Demand Side Management in Power Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
    3. Herodotos Herodotou, 2021. "Introduction to the Special Issue on Data-Intensive Computing in Smart Microgrids," Energies, MDPI, vol. 14(9), pages 1-3, May.
    4. Ahmad Alzahrani & Ghulam Hafeez & Sajjad Ali & Sadia Murawwat & Muhammad Iftikhar Khan & Khalid Rehman & Azher M. Abed, 2023. "Multi-Objective Energy Optimization with Load and Distributed Energy Source Scheduling in the Smart Power Grid," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    5. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    6. Kalim Ullah & Taimoor Ahmad Khan & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Basem Alamri & Faheem Ali & Sajjad Ali & Sheraz Khan, 2022. "Demand Side Management Strategy for Multi-Objective Day-Ahead Scheduling Considering Wind Energy in Smart Grid," Energies, MDPI, vol. 15(19), pages 1-14, September.
    7. Fahad R. Albogamy, 2022. "Optimal Energy Consumption Scheduler Considering Real-Time Pricing Scheme for Energy Optimization in Smart Microgrid," Energies, MDPI, vol. 15(21), pages 1-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullah, Kalim & Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Javaid, Nadeem, 2021. "A multi-objective energy optimization in smart grid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 299(C).
    2. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
    3. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    4. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    5. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    6. L. Alvarado-Barrios & A. Rodríguez del Nozal & A. Tapia & J. L. Martínez-Ramos & D. G. Reina, 2019. "An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes," Energies, MDPI, vol. 12(11), pages 1-23, June.
    7. Ali M. Jasim & Basil H. Jasim & Habib Kraiem & Aymen Flah, 2022. "A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    8. Torkan, Ramin & Ilinca, Adrian & Ghorbanzadeh, Milad, 2022. "A genetic algorithm optimization approach for smart energy management of microgrids," Renewable Energy, Elsevier, vol. 197(C), pages 852-863.
    9. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    10. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    11. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    12. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    13. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    14. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    15. Dominique Barth & Benjamin Cohen-Boulakia & Wilfried Ehounou, 2022. "Distributed Reinforcement Learning for the Management of a Smart Grid Interconnecting Independent Prosumers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    16. Hao Xiao & Wei Pei & Zuomin Dong & Li Kong & Dan Wang, 2018. "Application and Comparison of Metaheuristic and New Metamodel Based Global Optimization Methods to the Optimal Operation of Active Distribution Networks," Energies, MDPI, vol. 11(1), pages 1-29, January.
    17. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    18. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    19. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    20. Ahmad Abuelrub & Osama Saadeh & Hussein M. K. Al-Masri, 2018. "Scenario Aggregation-Based Grid-Connected Photovoltaic Plant Design," Sustainability, MDPI, vol. 10(4), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5718-:d:438715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.