IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261919321531.html
   My bibliography  Save this article

A model for evaluating the configuration and dispatch of PV plus battery power plants

Author

Listed:
  • DiOrio, Nicholas
  • Denholm, Paul
  • Hobbs, William B.

Abstract

An open-source model was developed to optimize energy storage operation for photovoltaic- (PV-) plus-battery systems with AC-coupled and DC-coupled configurations. It includes the ability to use forecast energy prices to optimize battery charge and discharge on a rolling time horizon. The model allows for exploration of different configurations, including capital costs, inverter performance, dispatch flexibility, and capturing otherwise clipped energy for the DC-coupled system. The model can run 20 full years of hourly data in approximately two seconds, allowing comparison of a large number of configurations. We applied the model in a test case demonstrating reduced inverter clipping for DC-coupled systems and yielded slightly higher overall value than AC-coupled systems, with an approximately 2 percent increase in internal rate of return or benefit/cost ratio. Our results show that at current estimated prices for lithium-ion battery systems, large-scale PV-plus-battery plants are economically viable under the right conditions, with the configuration playing a role in system flexibility and performance. This model provides the ability for project developers, industry professionals, and researchers to use readily available software to quickly evaluate and design these systems.

Suggested Citation

  • DiOrio, Nicholas & Denholm, Paul & Hobbs, William B., 2020. "A model for evaluating the configuration and dispatch of PV plus battery power plants," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261919321531
    DOI: 10.1016/j.apenergy.2019.114465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919321531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ratnam, Elizabeth L. & Weller, Steven R. & Kellett, Christopher M., 2015. "An optimization-based approach to scheduling residential battery storage with solar PV: Assessing customer benefit," Renewable Energy, Elsevier, vol. 75(C), pages 123-134.
    2. Moshövel, Janina & Kairies, Kai-Philipp & Magnor, Dirk & Leuthold, Matthias & Bost, Mark & Gährs, Swantje & Szczechowicz, Eva & Cramer, Moritz & Sauer, Dirk Uwe, 2015. "Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption," Applied Energy, Elsevier, vol. 137(C), pages 567-575.
    3. Parra, David & Patel, Martin K., 2016. "Effect of tariffs on the performance and economic benefits of PV-coupled battery systems," Applied Energy, Elsevier, vol. 164(C), pages 175-187.
    4. Good, Jeremy & Johnson, Jeremiah X., 2016. "Impact of inverter loading ratio on solar photovoltaic system performance," Applied Energy, Elsevier, vol. 177(C), pages 475-486.
    5. Pena-Bello, A. & Barbour, E. & Gonzalez, M.C. & Patel, M.K. & Parra, D., 2019. "Optimized PV-coupled battery systems for combining applications: Impact of battery technology and geography," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 978-990.
    6. Martinek, Janna & Jorgenson, Jennie & Mehos, Mark & Denholm, Paul, 2018. "A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants," Applied Energy, Elsevier, vol. 231(C), pages 854-865.
    7. Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Assessment of forecasting methods on performance of photovoltaic-battery systems," Applied Energy, Elsevier, vol. 221(C), pages 358-373.
    8. Hu, Jiefeng & Xu, Yinliang & Cheng, Ka Wai & Guerrero, Josep M., 2018. "A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions," Applied Energy, Elsevier, vol. 221(C), pages 195-203.
    9. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    10. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    11. Nicolás Müller & Samir Kouro & Pericle Zanchetta & Patrick Wheeler & Gustavo Bittner & Francesco Girardi, 2019. "Energy Storage Sizing Strategy for Grid-Tied PV Plants under Power Clipping Limitations," Energies, MDPI, vol. 12(9), pages 1-17, May.
    12. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    13. Nottrott, A. & Kleissl, J. & Washom, B., 2013. "Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems," Renewable Energy, Elsevier, vol. 55(C), pages 230-240.
    14. Few, Sheridan & Schmidt, Oliver & Offer, Gregory J. & Brandon, Nigel & Nelson, Jenny & Gambhir, Ajay, 2018. "Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: An analysis informed by expert elicitations," Energy Policy, Elsevier, vol. 114(C), pages 578-590.
    15. Gitizadeh, Mohsen & Fakharzadegan, Hamid, 2014. "Battery capacity determination with respect to optimized energy dispatch schedule in grid-connected photovoltaic (PV) systems," Energy, Elsevier, vol. 65(C), pages 665-674.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:cte:wsrepe:38369 is not listed on IDEAS
    2. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    3. Francesco Lo Franco & Antonio Morandi & Pietro Raboni & Gabriele Grandi, 2021. "Efficiency Comparison of DC and AC Coupling Solutions for Large-Scale PV+BESS Power Plants," Energies, MDPI, vol. 14(16), pages 1-22, August.
    4. Murphy, C.A. & Schleifer, A. & Eurek, K., 2021. "A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    6. Gorman, Will & Montañés, Cristina Crespo & Mills, Andrew & Kim, James Hyungkwan & Millstein, Dev & Wiser, Ryan, 2022. "Are coupled renewable-battery power plants more valuable than independently sited installations?," Energy Economics, Elsevier, vol. 107(C).
    7. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    8. Castillejo-Cuberos, A. & Cardemil, J.M. & Escobar, R., 2023. "Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage," Applied Energy, Elsevier, vol. 334(C).
    9. Bahloul, Mohamed & Daoud, Mohamed & Khadem, Shafi K., 2024. "Optimal dispatch of battery energy storage for multi-service provision in a collocated PV power plant considering battery ageing," Energy, Elsevier, vol. 293(C).
    10. Schleifer, Anna H. & Murphy, Caitlin A. & Cole, Wesley J. & Denholm, Paul, 2022. "Exploring the design space of PV-plus-battery system configurations under evolving grid conditions," Applied Energy, Elsevier, vol. 308(C).
    11. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    12. Gunkel, Philipp Andreas & Kachirayil, Febin & Bergaentzlé, Claire-Marie & McKenna, Russell & Keles, Dogan & Jacobsen, Henrik Klinge, 2023. "Uniform taxation of electricity: incentives for flexibility and cost redistribution among household categories," Energy Economics, Elsevier, vol. 127(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    2. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.
    3. Talent, Orlando & Du, Haiping, 2018. "Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures," Renewable Energy, Elsevier, vol. 129(PA), pages 513-526.
    4. Alejandro Pena-Bello & Edward Barbour & Marta C. Gonzalez & Selin Yilmaz & Martin K. Patel & David Parra, 2020. "How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?," Energies, MDPI, vol. 13(15), pages 1-19, August.
    5. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    6. Babacan, Oytun & Ratnam, Elizabeth L. & Disfani, Vahid R. & Kleissl, Jan, 2017. "Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration," Applied Energy, Elsevier, vol. 205(C), pages 1384-1393.
    7. Mostafa Farrokhabadi, 2019. "Data-Driven Mitigation of Energy Scheduling Inaccuracy in Renewable-Penetrated Grids: Summerside Electric Use Case," Energies, MDPI, vol. 12(12), pages 1-23, June.
    8. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    9. Schibuola, Luigi & Scarpa, Massimiliano & Tambani, Chiara, 2017. "Influence of charge control strategies on electricity import/export in battery-supported photovoltaic systems," Renewable Energy, Elsevier, vol. 113(C), pages 312-328.
    10. von Appen, J. & Braun, M., 2018. "Strategic decision making of distribution network operators and investors in residential photovoltaic battery storage systems," Applied Energy, Elsevier, vol. 230(C), pages 540-550.
    11. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    12. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    13. Toopshekan, Ashkan & Abedian, Ali & Azizi, Arian & Ahmadi, Esmaeil & Vaziri Rad, Mohammad Amin, 2023. "Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm," Energy, Elsevier, vol. 285(C).
    14. Nge, Chee Lim & Ranaweera, Iromi U. & Midtgård, Ole-Morten & Norum, Lars, 2019. "A real-time energy management system for smart grid integrated photovoltaic generation with battery storage," Renewable Energy, Elsevier, vol. 130(C), pages 774-785.
    15. Darghouth, Naïm R. & Wiser, Ryan H. & Barbose, Galen & Mills, Andrew D., 2016. "Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment," Applied Energy, Elsevier, vol. 162(C), pages 713-722.
    16. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    17. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    18. Ayat-Allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Post-Print hal-03344439, HAL.
    19. Wang, Guang Chao & Ratnam, Elizabeth & Haghi, Hamed Valizadeh & Kleissl, Jan, 2019. "Corrective receding horizon EV charge scheduling using short-term solar forecasting," Renewable Energy, Elsevier, vol. 130(C), pages 1146-1158.
    20. Berrueta, Alberto & Heck, Michael & Jantsch, Martin & Ursúa, Alfredo & Sanchis, Pablo, 2018. "Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants," Applied Energy, Elsevier, vol. 228(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261919321531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.