IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2325-d539691.html
   My bibliography  Save this article

Model-Free Neural Network-Based Predictive Control for Robust Operation of Power Converters

Author

Listed:
  • Sanaz Sabzevari

    (Department of Electrical and Computer Engineering, Semnan University, Semnan 35131-19111, Iran)

  • Rasool Heydari

    (Energy Technology Department, Aalborg University of Denmark, 9220 Aalborg, Denmark)

  • Maryam Mohiti

    (Department of Electrical Engineering, University of Yazd, Yazd 89158-18411, Iran)

  • Mehdi Savaghebi

    (Department of Mechanical and Electrical Engineering, University of Southern Denmark, 5230 Odense, Denmark)

  • Jose Rodriguez

    (Department of Engineering Science, Universidad Andres Bello, 7500971 Santiago, Chile)

Abstract

An accurate definition of a system model significantly affects the performance of model-based control strategies, for example, model predictive control (MPC). In this paper, a model-free predictive control strategy is presented to mitigate all ramifications of the model’s uncertainties and parameter mismatch between the plant and controller for the control of power electronic converters in applications such as microgrids. A specific recurrent neural network structure called state-space neural network (ssNN) is proposed as a model-free current predictive control for a three-phase power converter. In this approach, NN weights are updated through particle swarm optimization (PSO) for faster convergence. After the training process, the proposed ssNN-PSO combined with the predictive controller using a performance criterion overcomes parameter variations in the physical system. A comparison has been carried out between the conventional MPC and the proposed model-free predictive control in different scenarios. The simulation results of the proposed control scheme exhibit more robustness compared to the conventional finite-control-set MPC.

Suggested Citation

  • Sanaz Sabzevari & Rasool Heydari & Maryam Mohiti & Mehdi Savaghebi & Jose Rodriguez, 2021. "Model-Free Neural Network-Based Predictive Control for Robust Operation of Power Converters," Energies, MDPI, vol. 14(8), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2325-:d:539691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2325/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2325/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiongchao Lin & Wenshuai Xi & Jinze Dai & Caihong Wang & Yonggang Wang, 2020. "Prediction of Slag Characteristics Based on Artificial Neural Network for Molten Gasification of Hazardous Wastes," Energies, MDPI, vol. 13(19), pages 1-18, October.
    2. Mostefa Mohamed-Seghir & Abdelbasset Krama & Shady S. Refaat & Mohamed Trabelsi & Haitham Abu-Rub, 2020. "Artificial Intelligence-Based Weighting Factor Autotuning for Model Predictive Control of Grid-Tied Packed U-Cell Inverter," Energies, MDPI, vol. 13(12), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Constantin Volosencu, 2022. "Study of the Angular Positioning of a Rotating Object Based on Some Computational Intelligence Methods," Mathematics, MDPI, vol. 10(7), pages 1-46, April.
    2. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    3. Yuzhe Zhang & Xiaodong Liu & Haitao Li & Zhenbin Zhang, 2023. "A Model Independent Predictive Control of PMSG Wind Turbine Systems with a New Mechanism to Update Variables," Energies, MDPI, vol. 16(9), pages 1-15, April.
    4. M. A. Hannan & Ali Q. Al-Shetwi & M. S. Mollik & Pin Jern Ker & M. Mannan & M. Mansor & Hussein M. K. Al-Masri & T. M. Indra Mahlia, 2023. "Wind Energy Conversions, Controls, and Applications: A Review for Sustainable Technologies and Directions," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    5. Muhammad Nauman & Wajiha Shireen & Amir Hussain, 2022. "Model-Free Predictive Control and Its Applications," Energies, MDPI, vol. 15(14), pages 1-24, July.
    6. Vo-Van Thanh & Wencong Su & Bin Wang, 2022. "Optimal DC Microgrid Operation with Model Predictive Control-Based Voltage-Dependent Demand Response and Optimal Battery Dispatch," Energies, MDPI, vol. 15(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Łebkowski & Wojciech Koznowski, 2020. "Analysis of the Use of Electric and Hybrid Drives on SWATH Ships," Energies, MDPI, vol. 13(24), pages 1-26, December.
    2. Tomasz Tietze & Piotr Szulc & Daniel Smykowski & Andrzej Sitka & Romuald Redzicki, 2021. "Application of Phase Change Material and Artificial Neural Networks for Smoothing of Heat Flux Fluctuations," Energies, MDPI, vol. 14(12), pages 1-17, June.
    3. Piotr Szewczyk & Andrzej Łebkowski, 2021. "Studies on Energy Consumption of Electric Light Commercial Vehicle Powered by In-Wheel Drive Modules," Energies, MDPI, vol. 14(22), pages 1-28, November.
    4. Ibrahim Harbi & Mohamed Abdelrahem & Mostafa Ahmed & Ralph Kennel, 2020. "Reduced-Complexity Model Predictive Control with Online Parameter Assessment for a Grid-Connected Single-Phase Multilevel Inverter," Sustainability, MDPI, vol. 12(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2325-:d:539691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.