IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9380-d1000258.html
   My bibliography  Save this article

Effect Quantification of BESS Providing Frequency Response on Penetration Limit of VER in Power Systems

Author

Listed:
  • Woo Yeong Choi

    (Smart Grid Research Division, Korea Electrotechnology Research Institute, Gwangju 61751, Republic of Korea)

  • Kyung Soo Kook

    (Department of Electrical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea)

  • Hyeong-Jun Yoo

    (Smart Grid Research Division, Korea Electrotechnology Research Institute, Gwangju 61751, Republic of Korea)

Abstract

Increasing the penetration of variable energy resources (VER) can reduce the inertia and frequency response performance of power systems supported by replacement synchronous power generation. Therefore, it is necessary to manage the VER penetration limit in power systems for stable operation and to increase the operability to the desired level. This study proposes a method to evaluate and quantify the effect of increasing the penetration limit of VER by controlling a battery energy storage system (BESS). The BESS can provide a fast response, but frequency response performance varies depending on the operating conditions. In the proposed quantification method, various control methods of a BESS, operating conditions of the power system, and penetration conditions of additional VER were analyzed, and the effect of the BESS on increasing the penetration limit of VER was evaluated. This evaluation and analysis enabled the selection of the BESS operating conditions to achieve the target VER capacity in the power system. The proposed quantification method was analyzed through simulations based on the Korean power system model. Therefore, it can contribute to estimating the required performance of the BESS for each system operating condition required to achieve the VER target.

Suggested Citation

  • Woo Yeong Choi & Kyung Soo Kook & Hyeong-Jun Yoo, 2022. "Effect Quantification of BESS Providing Frequency Response on Penetration Limit of VER in Power Systems," Energies, MDPI, vol. 15(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9380-:d:1000258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin-Yong Jung & Yoon-Sung Cho & Jae-Hyun Min & Hwachang Song, 2022. "An Operation Strategy of ESS for Enhancing the Frequency Stability of the Inverter-Based Jeju Grid," Energies, MDPI, vol. 15(9), pages 1-24, April.
    2. Ujjwal Datta & Akhtar Kalam & Juan Shi, 2020. "Battery Energy Storage System for Aggregated Inertia-Droop Control and a Novel Frequency Dependent State-of-Charge Recovery," Energies, MDPI, vol. 13(8), pages 1-18, April.
    3. Han Na Gwon & Woo Yeong Choi & Kyung Soo Kook, 2019. "Evaluation Method for Penetration Limit of Renewable Energy Sources in Korean Power System," Energies, MDPI, vol. 12(21), pages 1-11, November.
    4. Woo Yeong Choi & Kyung Soo Kook & Ga Ram Yu, 2019. "Control Strategy of BESS for Providing Both Virtual Inertia and Primary Frequency Response in the Korean Power System," Energies, MDPI, vol. 12(21), pages 1-17, October.
    5. Habib, Arslan & Sou, Chan & Hafeez, Hafiz Muhammad & Arshad, Adeel, 2018. "Evaluation of the effect of high penetration of renewable energy sources (RES) on system frequency regulation using stochastic risk assessment technique (an approach based on improved cumulant)," Renewable Energy, Elsevier, vol. 127(C), pages 204-212.
    6. Nenad Sijakovic & Aleksandar Terzic & Georgios Fotis & Ioannis Mentis & Magda Zafeiropoulou & Theodoros I. Maris & Emmanouil Zoulias & Charalambos Elias & Vladan Ristic & Vasiliki Vita, 2022. "Active System Management Approach for Flexibility Services to the Greek Transmission and Distribution System," Energies, MDPI, vol. 15(17), pages 1-31, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2021. "Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions – A case study for China," Applied Energy, Elsevier, vol. 282(PB).
    2. Cailian Gu & Yibo Wang & Weisheng Wang & Yang Gao, 2023. "Research on Load State Sensing and Early Warning Method of Distribution Network under High Penetration Distributed Generation Access," Energies, MDPI, vol. 16(7), pages 1-15, March.
    3. Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Sheraz Aslam & Tamim Alkhalifah, 2022. "Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities," Energies, MDPI, vol. 15(22), pages 1-34, November.
    4. Mariano G. Ippolito & Rossano Musca & Gaetano Zizzo, 2021. "Analysis and Simulations of the Primary Frequency Control during a System Split in Continental Europe Power System," Energies, MDPI, vol. 14(5), pages 1-22, March.
    5. Monica Borunda & Adrián Ramírez & Raul Garduno & Gerardo Ruíz & Sergio Hernandez & O. A. Jaramillo, 2022. "Photovoltaic Power Generation Forecasting for Regional Assessment Using Machine Learning," Energies, MDPI, vol. 15(23), pages 1-25, November.
    6. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    7. Stelios Loumakis & Evgenia Giannini & Zacharias Maroulis, 2019. "Renewable Energy Sources Penetration in Greece: Characteristics and Seasonal Variation of the Electricity Demand Share Covering," Energies, MDPI, vol. 12(12), pages 1-20, June.
    8. Lasantha Meegahapola & Alfeu Sguarezi & Jack Stanley Bryant & Mingchen Gu & Eliomar R. Conde D. & Rafael B. A. Cunha, 2020. "Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends," Energies, MDPI, vol. 13(13), pages 1-35, July.
    9. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    10. Akhyurna Swain & Elmouatamid Abdellatif & Ahmed Mousa & Philip W. T. Pong, 2022. "Sensor Technologies for Transmission and Distribution Systems: A Review of the Latest Developments," Energies, MDPI, vol. 15(19), pages 1-37, October.
    11. Xiaojing Hu & Haoling Min & Sai Dai & Zhi Cai & Xiaonan Yang & Qiang Ding & Zhanyong Yang & Feng Xiao, 2022. "Research on Maintenance Strategies for Different Transmission Sections to Improve the Consumption Rate Based on a Renewable Energy Production Simulation," Energies, MDPI, vol. 15(24), pages 1-11, December.
    12. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    13. Alexis B. Rey-Boué & N. F. Guerrero-Rodríguez & Johannes Stöckl & Thomas I. Strasser, 2019. "Modeling and Design of the Vector Control for a Three-Phase Single-Stage Grid-Connected PV System with LVRT Capability according to the Spanish Grid Code," Energies, MDPI, vol. 12(15), pages 1-28, July.
    14. Paolo Scarabaggio & Raffaele Carli & Graziana Cavone & Mariagrazia Dotoli, 2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective," Energies, MDPI, vol. 13(17), pages 1-19, September.
    15. Fauzan Hanif Jufri & Jaesung Jung & Budi Sudiarto & Iwa Garniwa, 2023. "Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid," Energies, MDPI, vol. 16(14), pages 1-22, July.
    16. Dong-Ju Chae & Kyung Soo Kook, 2024. "Inertia Energy-Based Required Capacity Calculation of BESS for Achieving Carbon Neutrality in Korean Power System," Energies, MDPI, vol. 17(8), pages 1-14, April.
    17. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Giraja Shankar Chaurasia & Georgios Fotis & Vasiliki Vita & Lambros Ekonomou & Christos Pavlatos, 2022. "Economic Feasibility of a Renewable Integrated Hybrid Power Generation System for a Rural Village of Ladakh," Energies, MDPI, vol. 15(23), pages 1-25, December.
    18. Tae-Hwan Jin & Ki-Yeol Shin & Mo Chung & Geon-Pyo Lim, 2022. "Development and Performance Verification of Frequency Control Algorithm and Hardware Controller Using Real-Time Cyber Physical System Simulator," Energies, MDPI, vol. 15(15), pages 1-24, August.
    19. Hina Maqbool & Adnan Yousaf & Rao Muhammad Asif & Ateeq Ur Rehman & Elsayed Tag Eldin & Muhammad Shafiq & Habib Hamam, 2022. "An Optimized Fuzzy Based Control Solution for Frequency Oscillation Reduction in Electric Grids," Energies, MDPI, vol. 15(19), pages 1-21, September.
    20. Umar Fitra Ramadhan & Jaewan Suh & Sungchul Hwang & Jaehyeong Lee & Minhan Yoon, 2022. "A Comprehensive Study of HVDC Link with Reserve Operation Control in a Multi-Infeed Direct Current Power System," Sustainability, MDPI, vol. 14(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9380-:d:1000258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.