IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7880-d951632.html
   My bibliography  Save this article

Techno-Economic Optimization of an Off-Grid Hybrid Power Generation for SRM IST, Delhi-NCR Campus

Author

Listed:
  • Shilpa Sambhi

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad 201204, India)

  • Himanshu Sharma

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad 201204, India)

  • Pankaj Kumar

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Delhi-NCR Campus, Ghaziabad 201204, India)

  • Georgios Fotis

    (Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education, 14121 Athens, Greece)

  • Vasiliki Vita

    (Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education, 14121 Athens, Greece)

  • Lambros Ekonomou

    (Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education, 14121 Athens, Greece)

Abstract

The limited availability of fossil fuels such as coal and increasing air pollution levels due to the burning of coal have pushed the trend of generating electricity from fossil fuels to generating it from locally available renewable resources. It is expected that the cost of electricity will decrease when locally available renewable resources are used. In this paper, it was proposed to commission a solar PV system in a part of an academic building of SRM IST University. The present study is an effort in-line with many initiatives taken up by the Indian Government. The performance index of solar PV system was analyzed. Supporting data were obtained from the NASA PDAV tool and then techno-economical analysis was carried out on HOMER. The average performance ratio and capacity factor of the solar PV system were obtained as 64.49% and 14.90%, respectively. For the optimal configuration, the net present cost and the levelized cost of electricity are $639,981 and $0.34 per kWh, respectively. As per the estimation, there will be no air pollution due to the proposed configuration, whereas if only a diesel generator is commissioned, then 200,417 kg of carbon dioxide will be emitted annually.

Suggested Citation

  • Shilpa Sambhi & Himanshu Sharma & Pankaj Kumar & Georgios Fotis & Vasiliki Vita & Lambros Ekonomou, 2022. "Techno-Economic Optimization of an Off-Grid Hybrid Power Generation for SRM IST, Delhi-NCR Campus," Energies, MDPI, vol. 15(21), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7880-:d:951632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leithon, Johann & Werner, Stefan & Koivunen, Visa, 2020. "Cost-aware renewable energy management: Centralized vs. distributed generation," Renewable Energy, Elsevier, vol. 147(P1), pages 1164-1179.
    2. Aryanpur, Vahid & Atabaki, Mohammad Saeid & Marzband, Mousa & Siano, Pierluigi & Ghayoumi, Kiarash, 2019. "An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 58-74.
    3. Maen Z. Kreishan & George P. Fotis & Vasiliki Vita & Lambros Ekonomou, 2016. "Distributed Generation Islanding Effect on Distribution Networks and End User Loads Using the Load Sharing Islanding Method," Energies, MDPI, vol. 9(11), pages 1-24, November.
    4. Das, Sayan & Ray, Avishek & De, Sudipta, 2020. "Optimum combination of renewable resources to meet local power demand in distributed generation: A case study for a remote place of India," Energy, Elsevier, vol. 209(C).
    5. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    6. Nenad Sijakovic & Aleksandar Terzic & Georgios Fotis & Ioannis Mentis & Magda Zafeiropoulou & Theodoros I. Maris & Emmanouil Zoulias & Charalambos Elias & Vladan Ristic & Vasiliki Vita, 2022. "Active System Management Approach for Flexibility Services to the Greek Transmission and Distribution System," Energies, MDPI, vol. 15(17), pages 1-31, August.
    7. Razmjoo, A. & Gakenia Kaigutha, L. & Vaziri Rad, M.A. & Marzband, M. & Davarpanah, A. & Denai, M., 2021. "A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area," Renewable Energy, Elsevier, vol. 164(C), pages 46-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Giraja Shankar Chaurasia & Georgios Fotis & Vasiliki Vita & Lambros Ekonomou & Christos Pavlatos, 2022. "Economic Feasibility of a Renewable Integrated Hybrid Power Generation System for a Rural Village of Ladakh," Energies, MDPI, vol. 15(23), pages 1-25, December.
    2. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    3. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    4. Samrat Chakraborty & Debottam Mukherjee & Pabitra Kumar Guchhait & Somudeep Bhattacharjee & Almoataz Youssef Abdelaziz & Adel El-Shahat, 2023. "Optimum Design of a Renewable-Based Integrated Energy System in Autonomous Mode for a Remote Hilly Location in Northeastern India," Energies, MDPI, vol. 16(4), pages 1-30, February.
    5. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Georgios Fotis & Vasiliki Vita, 2023. "Technical and Economic Analysis of Solar PV/Diesel Generator Smart Hybrid Power Plant Using Different Battery Storage Technologies for SRM IST, Delhi-NCR Campus," Sustainability, MDPI, vol. 15(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Giraja Shankar Chaurasia & Georgios Fotis & Vasiliki Vita & Lambros Ekonomou & Christos Pavlatos, 2022. "Economic Feasibility of a Renewable Integrated Hybrid Power Generation System for a Rural Village of Ladakh," Energies, MDPI, vol. 15(23), pages 1-25, December.
    2. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    3. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    4. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Georgios Fotis & Vasiliki Vita, 2023. "Technical and Economic Analysis of Solar PV/Diesel Generator Smart Hybrid Power Plant Using Different Battery Storage Technologies for SRM IST, Delhi-NCR Campus," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    5. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    8. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    9. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Wu, Xiao & Xi, Han & Qiu, Ruohan & Lee, Kwang Y., 2023. "Low carbon optimal planning of the steel mill gas utilization system," Applied Energy, Elsevier, vol. 343(C).
    11. Terfa, H. & Baghli, L. & Bhandari, R., 2022. "Impact of renewable energy micro-power plants on power grids over Africa," Energy, Elsevier, vol. 238(PA).
    12. Das, Pronob & Das, Barun K. & Rahman, Mushfiqur & Hassan, Rakibul, 2022. "Evaluating the prospect of utilizing excess energy and creating employments from a hybrid energy system meeting electricity and freshwater demands using multi-objective evolutionary algorithms," Energy, Elsevier, vol. 238(PB).
    13. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    14. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    15. Silviu Nate & Yuriy Bilan & Mariia Kurylo & Olena Lyashenko & Piotr Napieralski & Ganna Kharlamova, 2021. "Mineral Policy within the Framework of Limited Critical Resources and a Green Energy Transition," Energies, MDPI, vol. 14(9), pages 1-32, May.
    16. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    17. Isabelo Rabuya & Melissa Libres & Michael Lochinvar Abundo & Evelyn Taboada, 2021. "Moving Up the Electrification Ladder in Off-Grid Settlements with Rooftop Solar Microgrids," Energies, MDPI, vol. 14(12), pages 1-32, June.
    18. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    19. Chinna Alluraiah Nallolla & Vijayapriya Perumal, 2022. "Optimal Design of a Hybrid Off-Grid Renewable Energy System Using Techno-Economic and Sensitivity Analysis for a Rural Remote Location," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    20. Cailian Gu & Yibo Wang & Weisheng Wang & Yang Gao, 2023. "Research on Load State Sensing and Early Warning Method of Distribution Network under High Penetration Distributed Generation Access," Energies, MDPI, vol. 16(7), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7880-:d:951632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.