IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4060-d280046.html
   My bibliography  Save this article

Control Strategy of BESS for Providing Both Virtual Inertia and Primary Frequency Response in the Korean Power System

Author

Listed:
  • Woo Yeong Choi

    (Department of Electrical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeon-Ju 54896, Korea)

  • Kyung Soo Kook

    (Department of Electrical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeon-Ju 54896, Korea)

  • Ga Ram Yu

    (Korea Electricity Power Corporation (KEPCO), 55 Jeollyeok-ro, Na-Ju 58217, Korea)

Abstract

As the battery energy storage system (BESS) has been considered to be a solution to the diminished performance of frequency response in the Korean power system, in which renewable energy resources (RESs) are expected to increase rapidly, this paper proposes a control strategy for providing both the virtual inertia and primary frequency response considering the MW-scale BESS installed by the Korea Electricity Power Corporation (KEPCO). The benefit of such a fast and flexible BESS can be maximized by the proposed control strategy for making it provide both the inertia and primary frequency response, which would be deficit with the increased RES. In the proposed control strategy, the state of charge (SOC) is maintained in the specific range in which the life cycle is maximized, the interference of SOC recovery by frequency control is minimized, the responding capacity for providing the virtual inertia response is maximized during the transient period, and the performance requirements for frequency response are satisfied. The effectiveness of the proposed strategy is verified by both Korean power system model-based simulation and on-site operations.

Suggested Citation

  • Woo Yeong Choi & Kyung Soo Kook & Ga Ram Yu, 2019. "Control Strategy of BESS for Providing Both Virtual Inertia and Primary Frequency Response in the Korean Power System," Energies, MDPI, vol. 12(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4060-:d:280046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4060/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. SungHoon Lim & Taewan Kim & Kipo Yoon & DongHee Choi & Jung-Wook Park, 2022. "A Study on Frequency Stability and Primary Frequency Response of the Korean Electric Power System Considering the High Penetration of Wind Power," Energies, MDPI, vol. 15(5), pages 1-16, February.
    2. Jiaxin Wen & Siqi Bu & Bowen Zhou & Qiyu Chen & Dongsheng Yang, 2020. "A Fast-Algorithmic Probabilistic Evaluation on Regional Rate of Change of Frequency (RoCoF) for Operational Planning of High Renewable Penetrated Power Systems," Energies, MDPI, vol. 13(11), pages 1-14, June.
    3. Woo Yeong Choi & Kyung Soo Kook & Hyeong-Jun Yoo, 2022. "Effect Quantification of BESS Providing Frequency Response on Penetration Limit of VER in Power Systems," Energies, MDPI, vol. 15(24), pages 1-16, December.
    4. A.S.M. Mominul Hasan, 2020. "Electric Rickshaw Charging Stations as Distributed Energy Storages for Integrating Intermittent Renewable Energy Sources: A Case of Bangladesh," Energies, MDPI, vol. 13(22), pages 1-28, November.
    5. Dong-Ju Chae & Kyung Soo Kook, 2024. "Inertia Energy-Based Required Capacity Calculation of BESS for Achieving Carbon Neutrality in Korean Power System," Energies, MDPI, vol. 17(8), pages 1-14, April.
    6. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    7. Tae-Hwan Jin & Ki-Yeol Shin & Mo Chung & Geon-Pyo Lim, 2022. "Development and Performance Verification of Frequency Control Algorithm and Hardware Controller Using Real-Time Cyber Physical System Simulator," Energies, MDPI, vol. 15(15), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4060-:d:280046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.