Development of PMU-Based Transient Stability Detection Methods Using CNN-LSTM Considering Time Series Data Measurement
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Abdulaziz Almalaq & Saleh Albadran & Mohamed A. Mohamed, 2022. "Deep Machine Learning Model-Based Cyber-Attacks Detection in Smart Power Systems," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
- Seungchan Oh & Heewon Shin & Hwanhee Cho & Byongjun Lee, 2018. "Transient Impact Analysis of High Renewable Energy Sources Penetration According to the Future Korean Power Grid Scenario," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
- Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Shi, Zhongtuo & Yao, Wei & Zeng, Lingkang & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Convolutional neural network-based power system transient stability assessment and instability mode prediction," Applied Energy, Elsevier, vol. 263(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Murilo Eduardo Casteroba Bento, 2023. "Wide-Area Measurement-Based Two-Level Control Design to Tolerate Permanent Communication Failures," Energies, MDPI, vol. 16(15), pages 1-15, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
- Fuster-Palop, Enrique & Prades-Gil, Carlos & Masip, X. & Viana-Fons, Joan D. & Payá, Jorge, 2021. "Innovative regression-based methodology to assess the techno-economic performance of photovoltaic installations in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Zeyue Sun & Mohsen Eskandari & Chaoran Zheng & Ming Li, 2022. "Handling Computation Hardness and Time Complexity Issue of Battery Energy Storage Scheduling in Microgrids by Deep Reinforcement Learning," Energies, MDPI, vol. 16(1), pages 1-20, December.
- Sijia Li & Arman Oshnoei & Frede Blaabjerg & Amjad Anvari-Moghaddam, 2023. "Hierarchical Control for Microgrids: A Survey on Classical and Machine Learning-Based Methods," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
- Patrick Sunday Onen & Geev Mokryani & Rana H. A. Zubo, 2022. "Planning of Multi-Vector Energy Systems with High Penetration of Renewable Energy Source: A Comprehensive Review," Energies, MDPI, vol. 15(15), pages 1-25, August.
- Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Huimin Wang & Zhaojun Steven Li, 2022. "An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems," Journal of Risk and Reliability, , vol. 236(3), pages 495-507, June.
- Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
- Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
- Lu, Hsi-Peng & Cheng, Hsiang-Ling & Tzou, Jen-Chuen & Chen, Chiao-Shan, 2023. "Technology roadmap of AI applications in the retail industry," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
- Milan Belik & Olena Rubanenko, 2023. "Implementation of Digital Twin for Increasing Efficiency of Renewable Energy Sources," Energies, MDPI, vol. 16(12), pages 1-27, June.
- Isaías Gomes & Rui Melicio & Victor M. F. Mendes, 2021. "Assessing the Value of Demand Response in Microgrids," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
- Nastaran Gholizadeh & Petr Musilek, 2021. "Distributed Learning Applications in Power Systems: A Review of Methods, Gaps, and Challenges," Energies, MDPI, vol. 14(12), pages 1-18, June.
- Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
- Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
- Philippe de Bekker & Sho Cremers & Sonam Norbu & David Flynn & Valentin Robu, 2023. "Improving the Efficiency of Renewable Energy Assets by Optimizing the Matching of Supply and Demand Using a Smart Battery Scheduling Algorithm," Energies, MDPI, vol. 16(5), pages 1-26, March.
- He, Xin & Wang, Ning & Zhou, Qiaoqiao & Huang, Jun & Ramakrishna, Seeram & Li, Fanghua, 2024. "Smart aviation biofuel energy system coupling with machine learning technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
More about this item
Keywords
transient stability; transient stability detection; prediction accuracy; CNN-LSTM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8241-:d:963525. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.