A vulnerability spatiotemporal distribution prognosis framework for integrated energy systems within intricate data scenes according to importance-fuzzy high-utility pattern identification
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.121222
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zheng, Junjun & Okamura, Hiroyuki & Pang, Taoming & Dohi, Tadashi, 2021. "Availability importance measures of components in smart electric power grid systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
- Xu, Zhaoping & Ramirez-Marquez, Jose Emmanuel & Liu, Yu & Xiahou, Tangfan, 2020. "A new resilience-based component importance measure for multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Shi, Zhongtuo & Yao, Wei & Zeng, Lingkang & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Convolutional neural network-based power system transient stability assessment and instability mode prediction," Applied Energy, Elsevier, vol. 263(C).
- Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2021. "Location selection for waste-to-energy plants by using fuzzy linear programming," Energy, Elsevier, vol. 234(C).
- To-Cheng Wang & Chien-Wei Wu & Ming-Hung Shu, 2022. "A variables-type multiple-dependent-state sampling plan based on the lifetime performance index under a Weibull distribution," Annals of Operations Research, Springer, vol. 311(1), pages 381-399, April.
- Bayati, Navid & Balouji, Ebrahim & Baghaee, Hamid Reza & Hajizadeh, Amin & Soltani, Mohsen & Lin, Zhengyu & Savaghebi, Mehdi, 2022. "Locating high-impedance faults in DC microgrid clusters using support vector machines," Applied Energy, Elsevier, vol. 308(C).
- Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
- Wang, Haizheng & Zhao, Jian & Sun, Qian & Zhu, Honglu, 2019. "Probability modeling for PV array output interval and its application in fault diagnosis," Energy, Elsevier, vol. 189(C).
- Pantua, Conrad Allan Jay & Calautit, John Kaiser & Wu, Yupeng, 2021. "Sustainability and structural resilience of building integrated photovoltaics subjected to typhoon strength winds," Applied Energy, Elsevier, vol. 301(C).
- Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
- Qu, Fuming & Liu, Jinhai & Zhu, Hongfei & Zhou, Bowen, 2020. "Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy logic," Applied Energy, Elsevier, vol. 262(C).
- Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Zhai, Cong & Chou, Xiujian & He, Jian & Song, Linlin & Zhang, Zengxing & Wen, Tao & Tian, Zhumei & Chen, Xi & Zhang, Wendong & Niu, Zhichuan & Xue, Chenyang, 2018. "An electrostatic discharge based needle-to-needle booster for dramatic performance enhancement of triboelectric nanogenerators," Applied Energy, Elsevier, vol. 231(C), pages 1346-1353.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Chenhao & Zhou, Zhuoyu & Zeng, Xiangjun & Li, Zewen & Wang, Yuanyuan & Deng, Feng, 2022. "A multi-model-integration-based prediction methodology for the spatiotemporal distribution of vulnerabilities in integrated energy systems under the multi-type, imbalanced, and dependent input data sc," Applied Energy, Elsevier, vol. 320(C).
- Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.
- Wu, Jason & Baker, Jack W., 2020. "Statistical learning techniques for the estimation of lifeline network performance and retrofit selection," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
- Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
- Lyu, Dong & Si, Shubin, 2021. "Importance measure for K-out-of-n: G systems under dynamic random load considering strength degradation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Huimin Wang & Zhaojun Steven Li, 2022. "An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems," Journal of Risk and Reliability, , vol. 236(3), pages 495-507, June.
- Li, Ruiying & Gao, Ying, 2022. "On the component resilience importance measures for infrastructure systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
- Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
- Nastaran Gholizadeh & Petr Musilek, 2021. "Distributed Learning Applications in Power Systems: A Review of Methods, Gaps, and Challenges," Energies, MDPI, vol. 14(12), pages 1-18, June.
- Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
- Firouzi, Mohsen & Samimi, Abouzar & Salami, Abolfazl, 2022. "Reliability evaluation of a composite power system in the presence of renewable generations," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
- Byun, Ji-Eun & Song, Junho, 2021. "Generalized matrix-based Bayesian network for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Shirazi, Masoud & Fuinhas, José Alberto, 2023. "Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence," Renewable Energy, Elsevier, vol. 202(C), pages 347-361.
- Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Tayo Uthman Badrudeen & Nnamdi I. Nwulu & Saheed Lekan Gbadamosi, 2023. "Neural Network Based Approach for Steady-State Stability Assessment of Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
- Waqas Hashmi & Shahid Atiq & Muhammad Majid Hussain & Khurram Javed, 2024. "Tele-Trafficking of Virtual Data Storage Obtained from Smart Grid by Replicated Gluster in Syntose Environment," Energies, MDPI, vol. 17(10), pages 1-31, May.
- Wang, Ting & Zhang, Chunyan & Hao, Zhiguo & Monti, Antonello & Ponci, Ferdinanda, 2023. "Data-driven fault detection and isolation in DC microgrids without prior fault data: A transfer learning approach," Applied Energy, Elsevier, vol. 336(C).
- Liu, Meili & Qi, Xiaogang & Pan, Hao, 2022. "Optimizing communication network geodiversity for disaster resilience through shielding approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
More about this item
Keywords
IES I&M planning and organizing; Vulnerability spatiotemporal distribution prognosis; Time-dependent-lifetime importance; Importance-fuzzy high-utility patterns;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:344:y:2023:i:c:s030626192300586x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.