IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9080-d989179.html
   My bibliography  Save this article

Effect of Hydrogen Enhancement on Natural Flame Luminosity of Tri-Fuel Combustion in an Optical Engine

Author

Listed:
  • Qiang Cheng

    (Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland)

  • Zeeshan Ahmad

    (Wärtsilä Finland Oy, 65101 Vaasa, Finland)

  • Ossi Kaario

    (Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland)

  • Ville Vuorinen

    (Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland)

  • Martti Larmi

    (Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland)

Abstract

A novel combustion mode, namely tri-fuel (TF) combustion using a diesel pilot to ignite the premixed methane–hydrogen–air (CH 4 –H 2 –air) mixtures, was experimentally investigated under various H 2 fractions (0%, 10%, 20%, 40%, 60%) and ultra-lean conditions (equivalence ratio of φ = 0.5). The overarching objective is to evaluate the effect of H 2 fraction on flame characteristics and engine performance. To visualize the effect of H 2 fraction on the combustion process and flame characteristics, a high-speed color camera (Photron SA-Z) was employed for natural flame luminosity (NFL) imaging to visualize the instantaneous TF combustion process. The engine performance, flame characteristics, and flame stability are characterized based on cylinder pressure and color natural flame images. Both pressure-based and optical imaging-based analyses indicate that adding H 2 into the CH 4 –air mixture can dramatically improve engine performance, such as combustion efficiency, flame speed, and flame stability. The visualization results of NFL show that the addition of H 2 promotes the high-temperature reaction, which exhibits a brighter bluish flame during the start of combustion and main combustion, however, a brighter orangish flame during the end of combustion. Since the combustion is ultra-lean, increasing the H 2 concentration in the CH 4 –air mixture dramatically improves the flame propagation, which might reduce the CH 4 slip. However, higher H 2 concentration in the CH 4 –air mixture might lead to a high-temperature reaction that sequentially promotes soot emissions, which emit a bright yellowish flame.

Suggested Citation

  • Qiang Cheng & Zeeshan Ahmad & Ossi Kaario & Ville Vuorinen & Martti Larmi, 2022. "Effect of Hydrogen Enhancement on Natural Flame Luminosity of Tri-Fuel Combustion in an Optical Engine," Energies, MDPI, vol. 15(23), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9080-:d:989179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Larmi, Martti, 2021. "Effect of pilot fuel properties on lean dual-fuel combustion and emission characteristics in a heavy-duty engine," Applied Energy, Elsevier, vol. 282(PA).
    2. Alexandru Cernat & Constantin Pana & Niculae Negurescu & Gheorghe Lazaroiu & Cristian Nutu & Dinu Fuiorescu, 2020. "Hydrogen—An Alternative Fuel for Automotive Diesel Engines Used in Transportation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    3. Zareei, Javad & Rohani, Abbas & Mazari, Farhad & Mikkhailova, Maria Vladimirovna, 2021. "Numerical investigation of the effect of two-step injection (direct and port injection) of hydrogen blending and natural gas on engine performance and exhaust gas emissions," Energy, Elsevier, vol. 231(C).
    4. Abu-Jrai, Ahmad M. & Al-Muhtaseb, Ala'a H. & Hasan, Ahmad O., 2017. "Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)," Energy, Elsevier, vol. 119(C), pages 901-910.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Hekun & Jian, Yi & Yin, Bifeng & Yang, Junfeng & Liu, Zhiyuan, 2023. "Experimental study on the combustion, emissions and fuel consumption of elliptical nozzle diesel engine," Energy, Elsevier, vol. 262(PB).
    2. Zhou, Jianzhao & Ayub, Yousaf & Shi, Tao & Ren, Jingzheng & He, Chang, 2024. "Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment," Energy, Elsevier, vol. 288(C).
    3. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    4. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    5. Rimkus, Alfredas & Matijošius, Jonas & Bogdevičius, Marijonas & Bereczky, Ákos & Török, Ádám, 2018. "An investigation of the efficiency of using O2 and H2 (hydrooxile gas -HHO) gas additives in a ci engine operating on diesel fuel and biodiesel," Energy, Elsevier, vol. 152(C), pages 640-651.
    6. Kamil Wróbel & Justyna Wróbel & Wojciech Tokarz & Jakub Lach & Katarzyna Podsadni & Andrzej Czerwiński, 2022. "Hydrogen Internal Combustion Engine Vehicles: A Review," Energies, MDPI, vol. 15(23), pages 1-13, November.
    7. Nyangon, Joseph & Darekar, Ayesha, 2024. "Advancements in hydrogen energy systems: A review of levelized costs, financial incentives and technological innovations," Innovation and Green Development, Elsevier, vol. 3(3).
    8. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    9. Andrzej Szałek & Ireneusz Pielecha & Wojciech Cieslik, 2021. "Fuel Cell Electric Vehicle (FCEV) Energy Flow Analysis in Real Driving Conditions (RDC)," Energies, MDPI, vol. 14(16), pages 1-17, August.
    10. Luo, Jianbin & Liu, Zhonghang & Wang, Jie & Xu, Hongxiang & Tie, Yuanhao & Yang, Dayong & Zhang, Zhiqing & Zhang, Chengtao & Wang, Haijiao, 2022. "Investigation of hydrogen addition on the combustion, performance, and emission characteristics of a heavy-duty engine fueled with diesel/natural gas," Energy, Elsevier, vol. 260(C).
    11. Alexandru Cernat & Constantin Pana & Niculae Negurescu & Gheorghe Lazaroiu & Cristian Nutu, 2020. "The Influence of Hydrogen on Vaporization, Mixture Formation and Combustion of Diesel Fuel at an Automotive Diesel Engine," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    12. Pieter W. M. Vasbinder & Antoine W. G. de Vries & Wim Westerman, 2021. "Hydrogen Infrastructure Project Risks in The Netherlands," Energies, MDPI, vol. 14(19), pages 1-19, September.
    13. Chi, Yuanying & Xu, Weiyue & Xiao, Meng & Wang, Zhengzao & Zhang, Xufeng & Chen, Yahui, 2023. "Fuel-cycle based environmental and economic assessment of hydrogen fuel cell vehicles in China," Energy, Elsevier, vol. 282(C).
    14. Chang, Ke & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu & Meng, Hao & Liu, Dianqing, 2023. "Numerical investigation of the synchronous and asynchronous changes of ignition timing in a double spark plugs direct injection rotary engine," Energy, Elsevier, vol. 268(C).
    15. Verschaeren, Roel & Verhelst, Sebastian, 2018. "Increasing exhaust temperature to enable after-treatment operation on a two-stage turbo-charged medium speed marine diesel engine," Energy, Elsevier, vol. 147(C), pages 681-687.
    16. Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
    17. Chang, Ke & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu & Xin, Gu & Meng, Hao, 2022. "Numerical investigation of the combined effect of injection angle and injection pressure in a gasoline direct injection rotary engine," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9080-:d:989179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.