IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031973.html
   My bibliography  Save this article

Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment

Author

Listed:
  • Zhou, Jianzhao
  • Ayub, Yousaf
  • Shi, Tao
  • Ren, Jingzheng
  • He, Chang

Abstract

A novel co-valorization process integrating plasma gasification and Fischer-Tropsch synthesis is designed for converting medical waste (MW) and biomass waste (BMW) into mixed e-fuels where the additional required hydrogen is supplied by solar-based electrolysis. Optimization and comprehensive assessments have been conducted for three scenarios with different ratios of BMW. Operations optimization based on genetic algorithm (GA) has led to a remarkable enhancement in the quality of syngas, with a more than 10% increase in H2 mole fraction. Techno-economic analysis reveals the net present values (NPVs) of three scenarios are −2.56 MM$, 3.38 MM$ and 40.1 MM$ with internal rates of return of 3.4 %, 9.5 % and 14.0 %. By improving the subside of MW treatment, the economic viabilities of all scenarios have been enhanced significantly with higher positive NPVs. Environmental assessment shows ∼2.5 kg eqCO2/kg waste and ∼0.1 g eqCO2 per MJ fuel have been generated across the system boundary and the operation of the designed process has been identified to be the largest source of emissions. These findings underscore the potential of our integrated approach to efficiently convert MW and BMW into valuable e-fuels while maintaining a focus on environmental sustainability.

Suggested Citation

  • Zhou, Jianzhao & Ayub, Yousaf & Shi, Tao & Ren, Jingzheng & He, Chang, 2024. "Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031973
    DOI: 10.1016/j.energy.2023.129803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandru Cernat & Constantin Pana & Niculae Negurescu & Gheorghe Lazaroiu & Cristian Nutu & Dinu Fuiorescu, 2020. "Hydrogen—An Alternative Fuel for Automotive Diesel Engines Used in Transportation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    2. Tungalag, Azjargal & Lee, BongJu & Yadav, Manoj & Akande, Olugbenga, 2020. "Yield prediction of MSW gasification including minor species through ASPEN plus simulation," Energy, Elsevier, vol. 198(C).
    3. Ou, Xunmin & Xiaoyu, Yan & Zhang, Xiliang, 2011. "Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China," Applied Energy, Elsevier, vol. 88(1), pages 289-297, January.
    4. Shi, Tao & Zhou, Jianzhao & Ren, Jingzheng & Ayub, Yousaf & Yu, Haoshui & Shen, Weifeng & Li, Qiao & Yang, Ao, 2023. "Co-valorisation of sewage sludge and poultry litter waste for hydrogen production: Gasification process design, sustainability-oriented optimization, and systematic assessment," Energy, Elsevier, vol. 272(C).
    5. Chu, Chu & Wang, Ping & Boré, Abdoulaye & Ma, Wenchao & Chen, Guanyi & Wang, Pan, 2023. "Thermal plasma co-gasification of polyvinylchloride and biomass mixtures under steam atmospheres: Gasification characteristics and chlorine release behavior," Energy, Elsevier, vol. 262(PB).
    6. Menikpura, S.N.M. & Sang-Arun, Janya & Bengtsson, Magnus, 2016. "Assessment of environmental and economic performance of Waste-to-Energy facilities in Thai cities," Renewable Energy, Elsevier, vol. 86(C), pages 576-584.
    7. Zhao, Xiang & You, Fengqi, 2021. "Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives," Applied Energy, Elsevier, vol. 283(C).
    8. Mu, Ruiqi & Liu, Ming & Zhang, Peiye & Yan, Junjie, 2023. "System design and thermo-economic analysis of a new coal power generation system based on supercritical water gasification with full CO2 capture," Energy, Elsevier, vol. 285(C).
    9. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    10. Li, Guoxuan & Cui, Peizhe & Wang, Yinglong & Liu, Zhiqiang & Zhu, Zhaoyou & Yang, Sheng, 2020. "Life cycle energy consumption and GHG emissions of biomass-to-hydrogen process in comparison with coal-to-hydrogen process," Energy, Elsevier, vol. 191(C).
    11. Kannangara, Miyuru & Shadbahr, Jalil & Vasudev, Madhav & Yang, Jianjun & Zhang, Lei & Bensebaa, Farid & Lees, Eric & Simpson, Grace & Berlinguette, Curtis & Cai, Jingjing & Nishikawa, Emily & McCoy, S, 2022. "A standardized methodology for economic and carbon footprint assessment of CO2 to transport fuels: Comparison of novel bicarbonate electrolysis with competing pathways," Applied Energy, Elsevier, vol. 325(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Kexin & Wei, Ranran & Ruan, Jiuxu & Cui, Peizhe & Zhu, Zhaoyou & Wang, Yinglong & Zhao, Xinling, 2023. "Life cycle assessment and life cycle cost analysis of surgical mask from production to recycling into hydrogen process," Energy, Elsevier, vol. 283(C).
    2. Li, Junjie & Cheng, Wanjing, 2020. "Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol," Applied Energy, Elsevier, vol. 277(C).
    3. Busch, P. & Kendall, A. & Lipman, T., 2023. "A systematic review of life cycle greenhouse gas intensity values for hydrogen production pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Li, Guoxuan & Wang, Shuai & Zhao, Jiangang & Qi, Huaqing & Ma, Zhaoyuan & Cui, Peizhe & Zhu, Zhaoyou & Gao, Jun & Wang, Yinglong, 2020. "Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming," Energy, Elsevier, vol. 199(C).
    5. Shi, Tao & Zhou, Jianzhao & Ren, Jingzheng & Ayub, Yousaf & Yu, Haoshui & Shen, Weifeng & Li, Qiao & Yang, Ao, 2023. "Co-valorisation of sewage sludge and poultry litter waste for hydrogen production: Gasification process design, sustainability-oriented optimization, and systematic assessment," Energy, Elsevier, vol. 272(C).
    6. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    7. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    8. Jia, Hekun & Jian, Yi & Yin, Bifeng & Yang, Junfeng & Liu, Zhiyuan, 2023. "Experimental study on the combustion, emissions and fuel consumption of elliptical nozzle diesel engine," Energy, Elsevier, vol. 262(PB).
    9. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    10. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    11. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    12. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    13. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    14. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    15. Chen, Wei-Hsin & Tsai, Ming-Hang & Hung, Chen-I, 2013. "Numerical prediction of CO2 capture process by a single droplet in alkaline spray," Applied Energy, Elsevier, vol. 109(C), pages 125-134.
    16. Wijayasekera, Sachindra Chamode & Hewage, Kasun & Hettiaratchi, Patrick & Razi, Faran & Sadiq, Rehan, 2023. "Planning and development of waste-to-hydrogen conversion facilities: A parametric analysis," Energy, Elsevier, vol. 278(PA).
    17. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    18. Liyan Feng & Jun Zhai & Lei Chen & Wuqiang Long & Jiangping Tian & Bin Tang, 2017. "Increasing the application of gas engines to decrease China’s GHG emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 839-861, August.
    19. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.