IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9055-d988406.html
   My bibliography  Save this article

Water Vapor Blending Ratio Effects on Combustion Thermal Performance and Emission of Hydrogen Homogeneous Charge Compression Ignition

Author

Listed:
  • Wenhua Yuan

    (School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
    Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, China)

  • Xueliang Huang

    (School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China)

  • Jun Fu

    (School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
    Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, China)

  • Yi Ma

    (School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
    Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, China)

  • Guangming Li

    (School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
    Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, China)

  • Qike Huang

    (School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
    Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, China)

Abstract

A numerical model of the micro-free-piston engine was developed and its correctness was verified by the comparison between the simulation and referential experiment results under the same work conditions. Based on this numerical model, the effects of the water vapor blending ratio ( α ) on combustion thermal performance and emission characteristics of hydrogen (H 2 ) homogeneous charge compressing ignition (HCCI) were investigated numerically. The water vapor impact on combustion temperature was analyzed as well. The simulation results reveal that when the initial equivalent ratio is 0.5, blending H 2 with water vapor can delay the ignition time and prolong the whole process. At the same time, the addition of water vapor to H 2 decreases the peak combustion temperature and pressure, which will alleviate the detonation phenomenon of the combustion chamber. Moreover, the power output capacity and NO x emissions decrease with the increase in α . When α increases to 0.8, the mixture gas cannot be compressed to ignite. Finally, the dilution effect, thermal effect, and chemical effect of water vapor all have the potential to lower the combustion temperature and the dilution effect plays the leading role.

Suggested Citation

  • Wenhua Yuan & Xueliang Huang & Jun Fu & Yi Ma & Guangming Li & Qike Huang, 2022. "Water Vapor Blending Ratio Effects on Combustion Thermal Performance and Emission of Hydrogen Homogeneous Charge Compression Ignition," Energies, MDPI, vol. 15(23), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9055-:d:988406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9055/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9055/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soloiu, Valentin & Duggan, Marvin & Harp, Spencer & Vlcek, Brian & Williams, David, 2013. "PFI (port fuel injection) of n-butanol and direct injection of biodiesel to attain LTC (low-temperature combustion) for low-emissions idling in a compression engine," Energy, Elsevier, vol. 52(C), pages 143-154.
    2. Wang, Qian & Wu, Fan & Zhao, Yan & Bai, Jin & Huang, Rong, 2019. "Study on combustion characteristics and ignition limits extending of micro free-piston engines," Energy, Elsevier, vol. 179(C), pages 805-814.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    2. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    4. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    5. Liu, Haifeng & Wang, Xin & Zheng, Zunqing & Gu, Jingbo & Wang, Hu & Yao, Mingfa, 2014. "Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine," Energy, Elsevier, vol. 74(C), pages 741-752.
    6. Han, Weiqiang & Li, Bolun & Pan, Suozhu & Lu, Yao & Li, Xin, 2018. "Combined effect of inlet pressure, total cycle energy, and start of injection on low load reactivity controlled compression ignition combustion and emission characteristics in a multi-cylinder heavy-d," Energy, Elsevier, vol. 165(PB), pages 846-858.
    7. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    8. Irimescu, A. & Marchitto, L. & Merola, S.S. & Tornatore, C. & Valentino, G., 2015. "Combustion process investigations in an optically accessible DISI engine fuelled with n-butanol during part load operation," Renewable Energy, Elsevier, vol. 77(C), pages 363-376.
    9. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    10. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    11. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    12. Ji, Changwei & Shi, Lei & Wang, Shuofeng & Cong, Xiaoyu & Su, Teng & Yu, Menghui, 2017. "Investigation on performance of a spark-ignition engine fueled with dimethyl ether and gasoline mixtures under idle and stoichiometric conditions," Energy, Elsevier, vol. 126(C), pages 335-342.
    13. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    14. Ayat Gharehghani & Alireza Kakoee & Amin Mahmoudzadeh Andwari & Thanos Megaritis & Apostolos Pesyridis, 2021. "Numerical Investigation of an RCCI Engine Fueled with Natural Gas/Dimethyl-Ether in Various Injection Strategies," Energies, MDPI, vol. 14(6), pages 1-25, March.
    15. Soloiu, Valentin & Moncada, Jose D. & Gaubert, Remi & Muiños, Martin & Harp, Spencer & Ilie, Marcel & Zdanowicz, Andrew & Molina, Gustavo, 2018. "LTC (low-temperature combustion) analysis of PCCI (premixed charge compression ignition) with n-butanol and cotton seed biodiesel versus combustion and emissions characteristics of their binary mixtur," Renewable Energy, Elsevier, vol. 123(C), pages 323-333.
    16. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    17. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    18. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    19. Ranjit, P.S. & Chintala, Venkateswarlu, 2022. "Direct utilization of preheated deep fried oil in an indirect injection compression ignition engine with waste heat recovery framework," Energy, Elsevier, vol. 242(C).
    20. Thomas, Justin Jacob & Sabu, V.R. & Nagarajan, G. & Kumar, Suraj & Basrin, G., 2020. "Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9055-:d:988406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.