The Bearing Faults Detection Methods for Electrical Machines—The State of the Art
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pradeep Kundu & Seema Chopra & Bhupesh K. Lad, 2019. "Multiple failure behaviors identification and remaining useful life prediction of ball bearings," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1795-1807, April.
- Levent Eren, 2017. "Bearing Fault Detection by One-Dimensional Convolutional Neural Networks," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, July.
- N. Bessous & S. E. Zouzou & W. Bentrah & S. Sbaa & M. Sahraoui, 2018. "Diagnosis of bearing defects in induction motors using discrete wavelet transform," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(2), pages 335-343, April.
- Ehsan Mollasalehi & David Wood & Qiao Sun, 2017. "Indicative Fault Diagnosis of Wind Turbine Generator Bearings Using Tower Sound and Vibration," Energies, MDPI, vol. 10(11), pages 1-14, November.
- Lucia Frosini, 2020. "Novel Diagnostic Techniques for Rotating Electrical Machines—A Review," Energies, MDPI, vol. 13(19), pages 1-26, September.
- Zijian Liu & Pinjia Zhang & Shan He & Jin Huang, 2021. "A Review of Modeling and Diagnostic Techniques for Eccentricity Fault in Electric Machines," Energies, MDPI, vol. 14(14), pages 1-21, July.
- Hang Yin & Zhongzhi Li & Jiankai Zuo & Hedan Liu & Kang Yang & Fei Li, 2020. "Wasserstein Generative Adversarial Network and Convolutional Neural Network (WG-CNN) for Bearing Fault Diagnosis," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-16, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Francisco Haces-Fernandez, 2021. "Higher Wind: Highlighted Expansion Opportunities to Repower Wind Energy," Energies, MDPI, vol. 14(22), pages 1-19, November.
- Jong-Yih Kuo & Shang-Yi You & Hui-Chi Lin & Chao-Yang Hsu & Baiying Lei, 2022. "Constructing Condition Monitoring Model of Wind Turbine Blades," Mathematics, MDPI, vol. 10(6), pages 1-13, March.
- Maciej Skowron & Czeslaw T. Kowalski & Teresa Orlowska-Kowalska, 2022. "Impact of the Convolutional Neural Network Structure and Training Parameters on the Effectiveness of the Diagnostic Systems of Modern AC Motor Drives," Energies, MDPI, vol. 15(19), pages 1-22, September.
- Xuejun Zhao & Yong Qin & Changbo He & Limin Jia, 2022. "Underdetermined blind source extraction of early vehicle bearing faults based on EMD and kernelized correlation maximization," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 185-201, January.
- Cherif, Hakima & Benakcha, Abdelhamid & Laib, Ismail & Chehaidia, Seif Eddine & Menacer, Arezky & Soudan, Bassel & Olabi, A.G., 2020. "Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor," Energy, Elsevier, vol. 212(C).
- Kumar, Anil & Parkash, Chander & Vashishtha, Govind & Tang, Hesheng & Kundu, Pradeep & Xiang, Jiawei, 2022. "State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Prashant Kumar & Prince Kumar & Ananda Shankar Hati & Heung Soo Kim, 2022. "Deep Transfer Learning Framework for Bearing Fault Detection in Motors," Mathematics, MDPI, vol. 10(24), pages 1-14, December.
- Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
- Han Cheng & Xianguang Kong & Qibin Wang & Hongbo Ma & Shengkang Yang & Gaige Chen, 2023. "Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 587-613, February.
- Tomas Garcia-Calva & Daniel Morinigo-Sotelo & Vanessa Fernandez-Cavero & Rene Romero-Troncoso, 2022. "Early Detection of Faults in Induction Motors—A Review," Energies, MDPI, vol. 15(21), pages 1-18, October.
- Rahul R. Kumar & Mauro Andriollo & Giansalvo Cirrincione & Maurizio Cirrincione & Andrea Tortella, 2022. "A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors," Energies, MDPI, vol. 15(23), pages 1-36, November.
- Shiza Mushtaq & M. M. Manjurul Islam & Muhammad Sohaib, 2021. "Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review," Energies, MDPI, vol. 14(16), pages 1-24, August.
- Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
- Chaoying Yang & Jie Liu & Kaibo Zhou & Xinyu Li, 2024. "Dynamic spatial–temporal graph-driven machine remaining useful life prediction method using graph data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 355-366, January.
- Lixiao Cao & Zheng Qian & Hamid Zareipour & David Wood & Ehsan Mollasalehi & Shuangshu Tian & Yan Pei, 2018. "Prediction of Remaining Useful Life of Wind Turbine Bearings under Non-Stationary Operating Conditions," Energies, MDPI, vol. 11(12), pages 1-20, November.
- Ravi Kumar Pandit & Davide Astolfi & Isidro Durazo Cardenas, 2023. "A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Xiaohua Song & Jing Liu & Chaobo Chen & Song Gao, 2022. "Advanced Methods in Rotating Machines," Energies, MDPI, vol. 15(15), pages 1-3, July.
- Dong, Shaojiang & Xiao, Jiafeng & Hu, Xiaolin & Fang, Nengwei & Liu, Lanhui & Yao, Jinbao, 2023. "Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Artem Ermolaev & Vladimir Erofeev & Aleksandr Plekhov & Dmitry Titov, 2022. "Magnetic Vibration in Induction Motor Caused by Supply Voltage Distortion," Energies, MDPI, vol. 15(24), pages 1-11, December.
More about this item
Keywords
bearing fault diagnosis; condition monitoring; feature extraction; fault detection and diagnoses; principal component analysis; neural networks; vibration signals; spectral analysis; genetic algorithm; support vector machines; power spectral density;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:296-:d:1016766. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.