IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7361-d672632.html
   My bibliography  Save this article

A Comprehensive Numerical Analysis of the Scavenging Process in a Uniflow Two-Stroke Diesel Engine for General Aviation

Author

Listed:
  • Maria Faruoli

    (Scuola di Ingegneria, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 85100 Potenza, Italy)

  • Alessandro Coclite

    (Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Via Re David, 70125 Bari, Italy)

  • Annarita Viggiano

    (Scuola di Ingegneria, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 85100 Potenza, Italy)

  • Paolo Caso

    (Costruzioni Motori Diesel CMD S.p.A., San Nicola La Strada, 81020 Caserta, Italy)

  • Vinicio Magi

    (Scuola di Ingegneria, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 85100 Potenza, Italy
    Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA)

Abstract

The scavenging process of two-stroke engines plays a fundamental role in cylinder flow patterns and in the overall engine performance. In this work, 3D CFD simulations of the scavenging in a uniflow, two-stroke, compression ignition engine for general aviation, named GF56, have been performed by using a 3D finite-volume FANS equations solver with k - ϵ closure. The GF56 engine consists of six cylinders, separated into two quasi-symmetric banks. Both the right and the left banks, together with the corresponding cylinders, are carefully analyzed. Charging and trapping efficiencies are computed as a function of the delivery ratio for different mass flow rates entering into the plenum, and the influence of the exhaust pressure and of the cylinder’s location in the bank are analyzed. The results show that the fresh air trapped during the scavenging process is quite similar for each cylinder of the right bank and it is about 92% of the in-cylinder mass. The cylinder’s location in the bank by itself slightly affects the scavenging performance, whereas the pressure profile at the outlet section has a major role. The design of the intake ports is fundamental for establishing the in-cylinder flow field and a new ports configuration is proposed to enhance the swirl ratio and, consequently, the scavenging performance with high delivery ratios.

Suggested Citation

  • Maria Faruoli & Alessandro Coclite & Annarita Viggiano & Paolo Caso & Vinicio Magi, 2021. "A Comprehensive Numerical Analysis of the Scavenging Process in a Uniflow Two-Stroke Diesel Engine for General Aviation," Energies, MDPI, vol. 14(21), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7361-:d:672632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7361/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    2. Wu, Yining & Wang, Yang & Zhen, Xudong & Guan, Shuai & Wang, Jiancai, 2014. "Three-dimensional CFD (computational fluid dynamics) analysis of scavenging process in a two-stroke free-piston engine," Energy, Elsevier, vol. 68(C), pages 167-173.
    3. Fukang Ma & Zhenfeng Zhao & Yangang Zhang & Jun Wang & Yaonan Feng & Tiexiong Su & Yi Zhang & Yuhang Liu, 2017. "Simulation Modeling Method and Experimental Investigation on the Uniflow Scavenging System of an Opposed-Piston Folded-Cranktrain Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-18, May.
    4. Sigurdsson, E. & Ingvorsen, K.M. & Jensen, M.V. & Mayer, S. & Matlok, S. & Walther, J.H., 2014. "Numerical analysis of the scavenge flow and convective heat transfer in large two-stroke marine diesel engines," Applied Energy, Elsevier, vol. 123(C), pages 37-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    2. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
    3. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    4. Fukang Ma & Zhenfeng Zhao & Yangang Zhang & Jun Wang & Yaonan Feng & Tiexiong Su & Yi Zhang & Yuhang Liu, 2017. "Simulation Modeling Method and Experimental Investigation on the Uniflow Scavenging System of an Opposed-Piston Folded-Cranktrain Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-18, May.
    5. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    6. Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Shuanlu Zhang, 2015. "Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 8(6), pages 1-19, June.
    7. Gu, Jie & Wang, Yingyuan & Hu, Jiancun & Zhang, Kun & Shi, Lei & Deng, Kangyao, 2024. "Real-time prediction of fuel consumption and emissions based on deep autoencoding support vector regression for cylinder pressure-based feedback control of marine diesel engines," Energy, Elsevier, vol. 300(C).
    8. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    9. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    10. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    11. Xingyu Liang & Zhijie Zhu & Xinyi Cao & Kun Wang & Yuesen Wang, 2022. "Research on the Soot Generation of Diesel Surrogate Mechanisms of Different Carbon Chain Length," Energies, MDPI, vol. 15(20), pages 1-17, October.
    12. Zhang, Shuanlu & Zhao, Zhenfeng & Zhao, Changlu & Zhang, Fujun & Wang, Shan, 2016. "Experimental study of hydraulic electronic unit injector in a hydraulic free piston engine," Applied Energy, Elsevier, vol. 179(C), pages 888-898.
    13. Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
    14. Yuan, Chenheng & Feng, Huihua & He, Yituan & Xu, Jing, 2016. "Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging," Energy, Elsevier, vol. 102(C), pages 637-649.
    15. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    16. Iqbal, Rashid & Liu, Yancheng & Zeng, Yuji & Zhang, Qinjin & Zeeshan, Muhammad, 2024. "Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green m," Renewable Energy, Elsevier, vol. 221(C).
    17. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Gong, Zhen & Feng, Liyan & Qu, Wenjing & Li, Lincheng & Wei, Lai, 2020. "Auto-ignition characteristics of methane/n-heptane mixtures under carbon dioxide and water dilution conditions," Applied Energy, Elsevier, vol. 278(C).
    19. Zhang, Shuanlu & Zhao, Zhenfeng & Zhao, Changlu & Zhang, Fujun & Wang, Shan, 2017. "Cold starting characteristics analysis of hydraulic free piston engine," Energy, Elsevier, vol. 119(C), pages 879-886.
    20. Yuan Qiao & Xucheng Duan & Kaisheng Huang & Yizhou Song & Jianan Qian, 2018. "Scavenging Ports’ Optimal Design of a Two-Stroke Small Aeroengine Based on the Benson/Bradham Model," Energies, MDPI, vol. 11(10), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7361-:d:672632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.