IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224013434.html
   My bibliography  Save this article

Real-time prediction of fuel consumption and emissions based on deep autoencoding support vector regression for cylinder pressure-based feedback control of marine diesel engines

Author

Listed:
  • Gu, Jie
  • Wang, Yingyuan
  • Hu, Jiancun
  • Zhang, Kun
  • Shi, Lei
  • Deng, Kangyao

Abstract

Predictive models serving as virtual sensors for online optimization and feedback control of diesel engines is gaining increasing attention. However, existing prediction models fall short in simultaneously achieving high prediction accuracy and fast computational speed. In this paper, a novel machine learning algorithm called deep autoencoding support vector regression (DASVR) was proposed, which combines the powerful non-linear feature extraction capability of artificial neural network (ANN) with the good adaptability of support vector regression (SVR) to low-dimensional input spaces. ANN-based autoencoder is firstly employed to extract features from the original high-dimensional input space, forming a low-dimensional latent variable space. SVR is then employed to perform non-linear mapping between latent variables and target output variables. Experiments were conducted on a 16-cylinder marine diesel engine under different load, rail pressure, and injection timing conditions. Prediction models for fuel consumption, NOx, PM, HC, and PM emissions were established based on experimental data and DASVR algorithm. The maximum error of DASVR-based models for the five desired output variables is less than 3.8 % under different operating conditions. DAVSR-based predictive models outperform conventional ANN-based and SVR-based models in terms of both prediction accuracy and real-time capability, and can theoretically meet the real-time requirement below 3000 r/min.

Suggested Citation

  • Gu, Jie & Wang, Yingyuan & Hu, Jiancun & Zhang, Kun & Shi, Lei & Deng, Kangyao, 2024. "Real-time prediction of fuel consumption and emissions based on deep autoencoding support vector regression for cylinder pressure-based feedback control of marine diesel engines," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013434
    DOI: 10.1016/j.energy.2024.131570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molina, S. & Guardiola, C. & Martín, J. & García-Sarmiento, D., 2014. "Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine," Applied Energy, Elsevier, vol. 119(C), pages 405-416.
    2. Roy, Sumit & Banerjee, Rahul & Bose, Probir Kumar, 2014. "Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network," Applied Energy, Elsevier, vol. 119(C), pages 330-340.
    3. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    4. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    2. Liang, Xingyu & Zhao, Bowen & Zhang, Fei & Liu, Qingling, 2019. "Compact research for maritime selective catalytic reduction reactor based on response surface methodology," Applied Energy, Elsevier, vol. 254(C).
    3. Tauzia, Xavier & Maiboom, Alain & Karaky, Hassan, 2017. "Semi-physical models to assess the influence of CI engine calibration parameters on NOx and soot emissions," Applied Energy, Elsevier, vol. 208(C), pages 1505-1518.
    4. Lu, Zhen & Liu, Mengyu & Shi, Lei & Wang, Tianyou & Lu, Tianlong & Wang, Huaiyin, 2022. "Numerical research of the injected exhaust gas recirculation strategy on a two-stroke low-speed marine diesel engine," Energy, Elsevier, vol. 244(PA).
    5. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    6. Xingyu Liang & Zhijie Zhu & Xinyi Cao & Kun Wang & Yuesen Wang, 2022. "Research on the Soot Generation of Diesel Surrogate Mechanisms of Different Carbon Chain Length," Energies, MDPI, vol. 15(20), pages 1-17, October.
    7. Sasanka Katreddi & Sujan Kasani & Arvind Thiruvengadam, 2022. "A Review of Applications of Artificial Intelligence in Heavy Duty Trucks," Energies, MDPI, vol. 15(20), pages 1-20, October.
    8. Du, Wei & Li, Yanjun & Shi, Jianxin & Sun, Baozhi & Wang, Chunhui & Zhu, Baitong, 2023. "Applying an improved particle swarm optimization algorithm to ship energy saving," Energy, Elsevier, vol. 263(PE).
    9. Lotfan, S. & Ghiasi, R. Akbarpour & Fallah, M. & Sadeghi, M.H., 2016. "ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II," Applied Energy, Elsevier, vol. 175(C), pages 91-99.
    10. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Bermúdez, Vicente & Serrano, José Ramón & Piqueras, Pedro & Campos, Daniel, 2015. "Analysis of the influence of pre-DPF water injection technique on pollutants emission," Energy, Elsevier, vol. 89(C), pages 778-792.
    12. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    13. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    14. Kayadelen, Hasan Kayhan, 2018. "A multi-featured model for estimation of thermodynamic properties, adiabatic flame temperature and equilibrium combustion products of fuels, fuel blends, surrogates and fuel additives," Energy, Elsevier, vol. 143(C), pages 241-256.
    15. Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
    16. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & lin, Jiansheng & Wei, Haiqiao & Zhou, Peilin, 2018. "Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine," Energy, Elsevier, vol. 153(C), pages 56-64.
    17. Babu, D. & Thangarasu, Vinoth & Ramanathan, Anand, 2020. "Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel," Applied Energy, Elsevier, vol. 263(C).
    18. Taghavifar, Hamid & Mardani, Aref & Karim Maslak, Haleh, 2015. "A comparative study between artificial neural networks and support vector regression for modeling of the dissipated energy through tire-obstacle collision dynamics," Energy, Elsevier, vol. 89(C), pages 358-364.
    19. Bishop, Justin D.K. & Stettler, Marc E.J. & Molden, N. & Boies, Adam M., 2016. "Engine maps of fuel use and emissions from transient driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 202-217.
    20. Evangelos G. Giakoumis & George Triantafillou, 2018. "Analysis of the Effect of Vehicle, Driving and Road Parameters on the Transient Performance and Emissions of a Turbocharged Truck," Energies, MDPI, vol. 11(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.