IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7508-d939998.html
   My bibliography  Save this article

Overview of the Hydrogen Production by Plasma-Driven Solution Electrolysis

Author

Listed:
  • Sergii Bespalko

    (Research and Innovation Centre Pro-Akademia, Innowacyjna Street 9/11, 95-050 Konstantynów Łódzki, Poland)

  • Jerzy Mizeraczyk

    (Department of Marine Electronics, Gdynia Maritime University, Morska Street 83, 81-225 Gdynia, Poland)

Abstract

This paper reviews the progress in applying the plasma-driven solution electrolysis (PDSE), which is also referred to as the contact glow-discharge electrolysis (CGDE) or plasma electrolysis, for hydrogen production. The physicochemical processes responsible for the formation of PDSE and effects occurring at the discharge electrode in the cathodic and anodic regimes of the PDSE operation are described. The influence of the PDSE process parameters, especially the discharge polarity, magnitude of the applied voltage, type and concentration of the typical electrolytic solutions (K 2 CO 3 , Na 2 CO 3 , KOH, NaOH, H 2 SO 4 ), presence of organic additives (CH 3 OH, C 2 H 5 OH, CH 3 COOH), temperature of the electrolytic solution, the active length and immersion depth of the discharge electrode into the electrolytic solution, on the energy efficiency (%), energy yield (g(H 2 )/kWh), and hydrogen production rate (g(H 2 )/h) is presented and discussed. This analysis showed that in the cathodic regime of PDSE, the hydrogen production rate is 33.3 times higher than that in the anodic regime of PDSE, whereas the Faradaic and energy efficiencies are 11 and 12.5 times greater, respectively, than that in the anodic one. It also revealed the energy yield of hydrogen production in the cathodic regime of PDSE in the methanol–water mixture, as the electrolytic solution is 3.9 times greater compared to that of the alkaline electrolysis, 4.1 times greater compared to the polymer electrolyte membrane electrolysis, 2.8 times greater compared to the solid oxide electrolysis, 1.75 times greater than that obtained in the microwave (2.45 GHz) plasma, and 5.8% greater compared to natural gas steam reforming.

Suggested Citation

  • Sergii Bespalko & Jerzy Mizeraczyk, 2022. "Overview of the Hydrogen Production by Plasma-Driven Solution Electrolysis," Energies, MDPI, vol. 15(20), pages 1-40, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7508-:d:939998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Jure Jovan & Gregor Dolanc, 2020. "Can Green Hydrogen Production Be Economically Viable under Current Market Conditions," Energies, MDPI, vol. 13(24), pages 1-16, December.
    2. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Yongjun & Liu, Hui, 2016. "Characteristics of hydrogen produced by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 168(C), pages 122-129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.
    2. Sergii Bespalko & Jerzy Mizeraczyk, 2022. "Energy Balance of Hydrogen Production in the Cathodic Regime of Plasma-Driven Solution Electrolysis of Na 2 CO 3 Aqueous Solution with Argon Carrier Gas," Energies, MDPI, vol. 15(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.
    2. Christian Schnuelle & Timo Wassermann & Torben Stuehrmann, 2022. "Mind the Gap—A Socio-Economic Analysis on Price Developments of Green Hydrogen, Synthetic Fuels, and Conventional Energy Carriers in Germany," Energies, MDPI, vol. 15(10), pages 1-13, May.
    3. Justyna Cader & Renata Koneczna & Piotr Olczak, 2021. "The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy," Energies, MDPI, vol. 14(16), pages 1-22, August.
    4. Alessandra Perna & Mariagiovanna Minutillo & Simona Di Micco & Elio Jannelli, 2022. "Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations," Energies, MDPI, vol. 15(2), pages 1-22, January.
    5. Sergii Bespalko & Jerzy Mizeraczyk, 2022. "Energy Balance of Hydrogen Production in the Cathodic Regime of Plasma-Driven Solution Electrolysis of Na 2 CO 3 Aqueous Solution with Argon Carrier Gas," Energies, MDPI, vol. 15(24), pages 1-13, December.
    6. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    7. Marcelo León & Javier Silva & Rodrigo Ortíz-Soto & Samuel Carrasco, 2023. "A Techno-Economic Study for Off-Grid Green Hydrogen Production Plants: The Case of Chile," Energies, MDPI, vol. 16(14), pages 1-18, July.
    8. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    9. Zhao, Xiaotong & Sun, Bing & Zhu, Tonghui & Zhu, Xiaomei & Yan, Zhiyu & Xin, Yanbin & Sun, Xiaohang, 2020. "Pathways of hydrogen-rich gas produced by microwave discharge in ethanol-water mixtures," Renewable Energy, Elsevier, vol. 156(C), pages 768-776.
    10. Byoungjik Park & Yangkyun Kim & Kwanwoo Lee & Shinwon Paik & Chankyu Kang, 2021. "Risk Assessment Method Combining Independent Protection Layers (IPL) of Layer of Protection Analysis (LOPA) and RISKCURVES Software: Case Study of Hydrogen Refueling Stations in Urban Areas," Energies, MDPI, vol. 14(13), pages 1-13, July.
    11. Anton Manakhov & Maxim Orlov & Mustafa Babiker & Abdulaziz S. Al-Qasim, 2022. "A Perspective on Decarbonizing Mobility: An All-Electrification vs. an All-Hydrogenization Venue," Energies, MDPI, vol. 15(15), pages 1-13, July.
    12. Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
    13. Wu, Angjian & Li, Xiaodong & Yan, Jianhua & Yang, Jian & Du, Changming & Zhu, Fengsen & Qian, Jinyuan, 2017. "Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma," Applied Energy, Elsevier, vol. 195(C), pages 67-79.
    14. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Liu, Hui & Liu, Yongjun, 2016. "Effects of plate electrode materials on hydrogen production by pulsed discharge in ethanol solution," Applied Energy, Elsevier, vol. 181(C), pages 75-82.
    16. Schrotenboer, Albert H. & Veenstra, Arjen A.T. & uit het Broek, Michiel A.J. & Ursavas, Evrim, 2022. "A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Luís Manuel Rodrigues & Tiago Soares & Igor Rezende & João Paulo Fontoura & Vladimiro Miranda, 2023. "Economic Analysis of a Hydrogen Power Plant in the Portuguese Electricity Market," Energies, MDPI, vol. 16(3), pages 1-17, February.
    18. Arturo de Risi & Gianpiero Colangelo & Marco Milanese, 2023. "Advanced Technologies for Green Hydrogen Production," Energies, MDPI, vol. 16(6), pages 1-4, March.
    19. Laura Pérez Orosa & Eva Chinarro & Domingo Guinea & María C. García-Alegre, 2022. "Hydrogen Production by Wastewater Alkaline Electro-Oxidation," Energies, MDPI, vol. 15(16), pages 1-19, August.
    20. Xin, Yanbin & Wang, Quanli & Sun, Jiabao & Sun, Bing, 2022. "Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7508-:d:939998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.