IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9431-d1002118.html
   My bibliography  Save this article

Energy Balance of Hydrogen Production in the Cathodic Regime of Plasma-Driven Solution Electrolysis of Na 2 CO 3 Aqueous Solution with Argon Carrier Gas

Author

Listed:
  • Sergii Bespalko

    (Research and Innovation Centre Pro-Akademia, Innowacyjna Street 9/11, 95-050 Konstantynów Łódzki, Poland)

  • Jerzy Mizeraczyk

    (Department of Marine Electronics, Gdynia Maritime University, Morska Street 83, 81-225 Gdynia, Poland)

Abstract

In this paper, the results of an experimental study on hydrogen production at a tungsten discharge electrode with negative polarity in the DC electrolysis of a typical 10 wt% Na 2 CO 3 aqueous solution in three operational regimes (the Faradaic, transition, and plasma-driven solution electrolysis (PDSE)) are presented for the first time. To focus the study on hydrogen production, a flowing inert gas (argon) was used to transport the gas mixture produced at the discharge electrode and prevent any other potential chemical reactions. The results showed that the highest hydrogen production rate of 0.147 g(H 2 )/h was achieved in the cathodic PDSE regime at the applied DC voltage of 198 V. However, the energy yield of hydrogen production of 0.405 g(H 2 )/kWh obtained at the applied voltage range of 141–170 V in the PDSE regime was lower than that obtained in the Faradaic regime (0.867 g(H 2 )/kWh) at 28 V. The energy balance of hydrogen production in the cathodic PDSE regime for the typical aqueous solution of Na 2 CO 3 carried out for the first time showed that a significant share (˃98%) of the electrical energy consumed is spent on heating and evaporation of the electrolytic solution. This explains why the energy yield of hydrogen production is low in the PDSE regime. Because most of the energy is consumed for heat generation in the cathodic PDSE regime, organic liquid hydrogen carriers, such as alcohols, which have a lower boiling temperature, heat of evaporation, and standard Gibbs free energy, should be considered better aqueous electrolytic solutions in terms of the energy yield of hydrogen production in the PDSE regime.

Suggested Citation

  • Sergii Bespalko & Jerzy Mizeraczyk, 2022. "Energy Balance of Hydrogen Production in the Cathodic Regime of Plasma-Driven Solution Electrolysis of Na 2 CO 3 Aqueous Solution with Argon Carrier Gas," Energies, MDPI, vol. 15(24), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9431-:d:1002118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Jure Jovan & Gregor Dolanc, 2020. "Can Green Hydrogen Production Be Economically Viable under Current Market Conditions," Energies, MDPI, vol. 13(24), pages 1-16, December.
    2. Sergii Bespalko & Jerzy Mizeraczyk, 2022. "Overview of the Hydrogen Production by Plasma-Driven Solution Electrolysis," Energies, MDPI, vol. 15(20), pages 1-40, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.
    2. Christian Schnuelle & Timo Wassermann & Torben Stuehrmann, 2022. "Mind the Gap—A Socio-Economic Analysis on Price Developments of Green Hydrogen, Synthetic Fuels, and Conventional Energy Carriers in Germany," Energies, MDPI, vol. 15(10), pages 1-13, May.
    3. Justyna Cader & Renata Koneczna & Piotr Olczak, 2021. "The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy," Energies, MDPI, vol. 14(16), pages 1-22, August.
    4. Alessandra Perna & Mariagiovanna Minutillo & Simona Di Micco & Elio Jannelli, 2022. "Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations," Energies, MDPI, vol. 15(2), pages 1-22, January.
    5. Marcelo León & Javier Silva & Rodrigo Ortíz-Soto & Samuel Carrasco, 2023. "A Techno-Economic Study for Off-Grid Green Hydrogen Production Plants: The Case of Chile," Energies, MDPI, vol. 16(14), pages 1-18, July.
    6. Byoungjik Park & Yangkyun Kim & Kwanwoo Lee & Shinwon Paik & Chankyu Kang, 2021. "Risk Assessment Method Combining Independent Protection Layers (IPL) of Layer of Protection Analysis (LOPA) and RISKCURVES Software: Case Study of Hydrogen Refueling Stations in Urban Areas," Energies, MDPI, vol. 14(13), pages 1-13, July.
    7. Anton Manakhov & Maxim Orlov & Mustafa Babiker & Abdulaziz S. Al-Qasim, 2022. "A Perspective on Decarbonizing Mobility: An All-Electrification vs. an All-Hydrogenization Venue," Energies, MDPI, vol. 15(15), pages 1-13, July.
    8. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Schrotenboer, Albert H. & Veenstra, Arjen A.T. & uit het Broek, Michiel A.J. & Ursavas, Evrim, 2022. "A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Luís Manuel Rodrigues & Tiago Soares & Igor Rezende & João Paulo Fontoura & Vladimiro Miranda, 2023. "Economic Analysis of a Hydrogen Power Plant in the Portuguese Electricity Market," Energies, MDPI, vol. 16(3), pages 1-17, February.
    11. Arturo de Risi & Gianpiero Colangelo & Marco Milanese, 2023. "Advanced Technologies for Green Hydrogen Production," Energies, MDPI, vol. 16(6), pages 1-4, March.
    12. Sergii Bespalko & Jerzy Mizeraczyk, 2022. "Overview of the Hydrogen Production by Plasma-Driven Solution Electrolysis," Energies, MDPI, vol. 15(20), pages 1-40, October.
    13. Laura Pérez Orosa & Eva Chinarro & Domingo Guinea & María C. García-Alegre, 2022. "Hydrogen Production by Wastewater Alkaline Electro-Oxidation," Energies, MDPI, vol. 15(16), pages 1-19, August.
    14. Andrea Dumančić & Nela Vlahinić Lenz & Goran Majstrović, 2023. "Can Hydrogen Production Be Economically Viable on the Existing Gas-Fired Power Plant Location? New Empirical Evidence," Energies, MDPI, vol. 16(9), pages 1-20, April.
    15. Nguyen Van Duc Long & Le Cao Nhien & Moonyong Lee, 2023. "Advanced Technologies in Hydrogen Revolution," Energies, MDPI, vol. 16(5), pages 1-4, February.
    16. Azadnia, Amir Hossein & McDaid, Conor & Andwari, Amin Mahmoudzadeh & Hosseini, Seyed Ehsan, 2023. "Green hydrogen supply chain risk analysis: A european hard-to-abate sectors perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Konstantin Gomonov & Marina Reshetnikova & Svetlana Ratner, 2023. "Economic Analysis of Recently Announced Green Hydrogen Projects in Russia: A Multiple Case Study," Energies, MDPI, vol. 16(10), pages 1-15, May.
    18. Charlotte Jarosch & Philipp Jahnke & Johannes Giehl & Jana Himmel, 2022. "Modelling Decentralized Hydrogen Systems: Lessons Learned and Challenges from German Regions," Energies, MDPI, vol. 15(4), pages 1-27, February.
    19. Santanu Kumar Dash & Suprava Chakraborty & Devaraj Elangovan, 2023. "A Brief Review of Hydrogen Production Methods and Their Challenges," Energies, MDPI, vol. 16(3), pages 1-17, January.
    20. Jae-Eun Shin, 2022. "Hydrogen Technology Development and Policy Status by Value Chain in South Korea," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9431-:d:1002118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.