IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1378-d509451.html
   My bibliography  Save this article

Demand Response Coupled with Dynamic Thermal Rating for Increased Transformer Reserve and Lifetime

Author

Listed:
  • Ildar Daminov

    (University Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 21 Avenue des Martyrs, 38000 Grenoble, France
    Power Engineering School, Tomsk Polytechnic University, 7, Usov Street, 634034 Tomsk, Russia)

  • Rémy Rigo-Mariani

    (University Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 21 Avenue des Martyrs, 38000 Grenoble, France)

  • Raphael Caire

    (University Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 21 Avenue des Martyrs, 38000 Grenoble, France)

  • Anton Prokhorov

    (Power Engineering School, Tomsk Polytechnic University, 7, Usov Street, 634034 Tomsk, Russia)

  • Marie-Cécile Alvarez-Hérault

    (University Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 21 Avenue des Martyrs, 38000 Grenoble, France)

Abstract

(1) Background: This paper proposes a strategy coupling Demand Response Program with Dynamic Thermal Rating to ensure a transformer reserve for the load connection. This solution is an alternative to expensive grid reinforcements. (2) Methods: The proposed methodology firstly considers the N-1 mode under strict assumptions on load and ambient temperature and then identifies critical periods of the year when transformer constraints are violated. For each critical period, the integrated management/sizing problem is solved in YALMIP to find the minimal Demand Response needed to ensure a load connection. However, due to the nonlinear thermal model of transformers, the optimization problem becomes intractable at long periods. To overcome this problem, a validated piece-wise linearization is applied here. (3) Results: It is possible to increase reserve margins significantly compared to conventional approaches. These high reserve margins could be achieved for relatively small Demand Response volumes. For instance, a reserve margin of 75% (of transformer nominal rating) can be ensured if only 1% of the annual energy is curtailed. Moreover, the maximal amplitude of Demand Response (in kW) should be activated only 2–3 h during a year. (4) Conclusions: Improvements for combining Demand Response with Dynamic Thermal Rating are suggested. Results could be used to develop consumer connection agreements with variable network access.

Suggested Citation

  • Ildar Daminov & Rémy Rigo-Mariani & Raphael Caire & Anton Prokhorov & Marie-Cécile Alvarez-Hérault, 2021. "Demand Response Coupled with Dynamic Thermal Rating for Increased Transformer Reserve and Lifetime," Energies, MDPI, vol. 14(5), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1378-:d:509451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martínez Ceseña, Eduardo A. & Good, Nicholas & Mancarella, Pierluigi, 2015. "Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users," Energy Policy, Elsevier, vol. 82(C), pages 222-232.
    2. Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.
    3. Zhou, Bin & Cao, Yingping & Li, Canbing & Wu, Qiuwei & Liu, Nian & Huang, Sheng & Wang, Huaizhi, 2020. "Many-criteria optimality of coordinated demand response with heterogeneous households," Energy, Elsevier, vol. 207(C).
    4. Sandels, C. & Widén, J. & Nordström, L., 2014. "Forecasting household consumer electricity load profiles with a combined physical and behavioral approach," Applied Energy, Elsevier, vol. 131(C), pages 267-278.
    5. Rigo-Mariani, Rémy & Chea Wae, Sean Ooi & Mazzoni, Stefano & Romagnoli, Alessandro, 2020. "Comparison of optimization frameworks for the design of a multi-energy microgrid," Applied Energy, Elsevier, vol. 257(C).
    6. Rui Li & Wei Wang & Zhe Chen & Jiuchun Jiang & Weige Zhang, 2017. "A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches," Energies, MDPI, vol. 10(11), pages 1-27, October.
    7. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    8. Chiodo, Elio & Lauria, Davide & Mottola, Fabio & Pisani, Cosimo, 2016. "Lifetime characterization via lognormal distribution of transformers in smart grids: Design optimization," Applied Energy, Elsevier, vol. 177(C), pages 127-135.
    9. Powell, Siobhan & Kara, Emre Can & Sevlian, Raffi & Cezar, Gustavo Vianna & Kiliccote, Sila & Rajagopal, Ram, 2020. "Controlled workplace charging of electric vehicles: The impact of rate schedules on transformer aging," Applied Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Faria & Zita Vale, 2023. "Demand Response in Smart Grids," Energies, MDPI, vol. 16(2), pages 1-3, January.
    2. Yasir Yaqoob & Arjuna Marzuki & Ching-Ming Lai & Jiashen Teh, 2022. "Fuzzy Dynamic Thermal Rating System-Based Thermal Aging Model for Transmission Lines," Energies, MDPI, vol. 15(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    2. Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
    3. Powell, Siobhan & Vianna Cezar, Gustavo & Apostolaki-Iosifidou, Elpiniki & Rajagopal, Ram, 2022. "Large-scale scenarios of electric vehicle charging with a data-driven model of control," Energy, Elsevier, vol. 248(C).
    4. Kang, Zixuan & Ye, Zhongnan & Lam, Chor-Man & Hsu, Shu-Chien, 2023. "Sustainable electric vehicle charging coordination: Balancing CO2 emission reduction and peak power demand shaving," Applied Energy, Elsevier, vol. 349(C).
    5. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    6. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
    8. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    9. Seger, Pedro V.H. & Rigo-Mariani, Rémy & Thivel, Pierre-Xavier & Riu, Delphine, 2023. "A storage degradation model of Li-ion batteries to integrate ageing effects in the optimal management and design of an isolated microgrid," Applied Energy, Elsevier, vol. 333(C).
    10. Cuenca, Juan J. & Daly, Hannah E. & Hayes, Barry P., 2023. "Sharing the grid: The key to equitable access for small-scale energy generation," Applied Energy, Elsevier, vol. 349(C).
    11. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    12. Rajaa Naji EL idrissi & Mohammed Ouassaid & Mohamed Maaroufi & Zineb Cabrane & Jonghoon Kim, 2023. "Optimal Cooperative Power Management Framework for Smart Buildings Using Bidirectional Electric Vehicle Modes," Energies, MDPI, vol. 16(5), pages 1-22, February.
    13. Loris Di Natale & Luca Funk & Martin Rüdisüli & Bratislav Svetozarevic & Giacomo Pareschi & Philipp Heer & Giovanni Sansavini, 2021. "The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland," Energies, MDPI, vol. 14(16), pages 1-24, August.
    14. Knobel, Alexander & Chokaev, Bekhan, 2014. "Possible Economic Outcomes of a Trade Agreement with the European Union," EconStor Preprints 121853, ZBW - Leibniz Information Centre for Economics.
    15. Paolo Lazzeroni & Brunella Caroleo & Maurizio Arnone & Cristiana Botta, 2021. "A Simplified Approach to Estimate EV Charging Demand in Urban Area: An Italian Case Study," Energies, MDPI, vol. 14(20), pages 1-18, October.
    16. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    17. Nikolaos Koutsoukis & Pavlos Georgilakis, 2019. "A Chance-Constrained Multistage Planning Method for Active Distribution Networks," Energies, MDPI, vol. 12(21), pages 1-19, October.
    18. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
    19. Kazmi, Hussain & Munné-Collado, Íngrid & Mehmood, Fahad & Syed, Tahir Abbas & Driesen, Johan, 2021. "Towards data-driven energy communities: A review of open-source datasets, models and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1378-:d:509451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.