IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4192-d833246.html
   My bibliography  Save this article

Power Transformer Diagnosis Based on Dissolved Gases Analysis and Copula Function

Author

Listed:
  • Xiaoqin Zhang

    (State Grid Jiangsu Electric Power Co., Ltd. Research Institute, Nanjing 211103, China)

  • Hongbin Zhu

    (State Grid Jiangsu Electric Power Co., Ltd. Research Institute, Nanjing 211103, China)

  • Bo Li

    (Jiangsu Key Laboratory of New Energy Generation and Power Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Ruihan Wu

    (Jiangsu Key Laboratory of New Energy Generation and Power Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Jun Jiang

    (Jiangsu Key Laboratory of New Energy Generation and Power Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract

The traditional DGA (Dissolved Gas Analysis) diagnosis method does not consider the dependence between fault characteristic gases and uses the relationship between gas ratio coding and fault type to make the decision. As a tool of the dependence mechanism between variables, a copula function can effectively analyze the correlation between variables when it cannot determine whether the linear correlation coefficient can correctly measure the correlation between variable relationships. In this paper, the edge variable of a copula function is selected from the fault characteristic gas of a transformer, and the distribution type of the edge variable is fitted at the same time. Then, Bayesian estimation with the Gaussian residual likelihood function is used to fit the parameters of a copula function and a copula function is selected to describe the optimal dependence of the fault characteristic gas of transformer. The relationship between a copula function and the state of transformer is studied. The results show that the copula function boundary with hydrocarbon gas as edge variable can divide the transformer as healthy or defective state. When the cumulative distribution probability (CDF) value of the dissolved gas in the oil in the copula function is close to 0.8, the fluctuation of its gas concentration leads to a sharp change in the probability. Therefore, the analysis of dissolved gas in oil based on a copula function can be used as a powerful technical solution for oil-immersed power transformer fault diagnosis.

Suggested Citation

  • Xiaoqin Zhang & Hongbin Zhu & Bo Li & Ruihan Wu & Jun Jiang, 2022. "Power Transformer Diagnosis Based on Dissolved Gases Analysis and Copula Function," Energies, MDPI, vol. 15(12), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4192-:d:833246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Youcef Benmahamed & Omar Kherif & Madjid Teguar & Ahmed Boubakeur & Sherif S. M. Ghoneim, 2021. "Accuracy Improvement of Transformer Faults Diagnostic Based on DGA Data Using SVM-BA Classifier," Energies, MDPI, vol. 14(10), pages 1-17, May.
    2. Hazlee Azil Illias & Xin Rui Chai & Ab Halim Abu Bakar & Hazlie Mokhlis, 2015. "Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ancuța-Mihaela Aciu & Sorin Enache & Maria-Cristina Nițu, 2024. "A Reviewed Turn at of Methods for Determining the Type of Fault in Power Transformers Based on Dissolved Gas Analysis," Energies, MDPI, vol. 17(10), pages 1-26, May.
    2. Haoling Min & Pinkun He & Chunlai Li & Libin Yang & Feng Xiao, 2024. "The Temporal and Spatial Characteristics of Wind–Photovoltaic–Hydro Hybrid Power Output Based on a Cloud Model and Copula Function," Energies, MDPI, vol. 17(5), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Sayed M. El-kenawy & Fahad Albalawi & Sayed A. Ward & Sherif S. M. Ghoneim & Marwa M. Eid & Abdelaziz A. Abdelhamid & Nadjem Bailek & Abdelhameed Ibrahim, 2022. "Feature Selection and Classification of Transformer Faults Based on Novel Meta-Heuristic Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    2. Engin Baker & Secil Varbak Nese & Erkan Dursun, 2023. "Hybrid Condition Monitoring System for Power Transformer Fault Diagnosis," Energies, MDPI, vol. 16(3), pages 1-11, January.
    3. Hazlee Azil Illias & Wee Zhao Liang, 2018. "Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-15, January.
    4. Zhi-Jun Li & Wei-Gen Chen & Jie Shan & Zhi-Yong Yang & Ling-Yan Cao, 2022. "Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis," Energies, MDPI, vol. 15(9), pages 1-22, April.
    5. Abdessamed Derdour & Hazem Ghassan Abdo & Hussein Almohamad & Abdullah Alodah & Ahmed Abdullah Al Dughairi & Sherif S. M. Ghoneim & Enas Ali, 2023. "Prediction of Groundwater Quality Index Using Classification Techniques in Arid Environments," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    6. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    7. Oussama Laayati & Hicham El Hadraoui & Adila El Magharaoui & Nabil El-Bazi & Mostafa Bouzi & Ahmed Chebak & Josep M. Guerrero, 2022. "An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers: A Novel Approach for Smart Grid-Ready Energy Management Systems," Energies, MDPI, vol. 15(19), pages 1-28, October.
    8. Bonginkosi A. Thango, 2022. "Dissolved Gas Analysis and Application of Artificial Intelligence Technique for Fault Diagnosis in Power Transformers: A South African Case Study," Energies, MDPI, vol. 15(23), pages 1-17, November.
    9. Andrey A. Radionov & Ivan V. Liubimov & Igor M. Yachikov & Ildar R. Abdulveleev & Ekaterina A. Khramshina & Alexander S. Karandaev, 2023. "Method for Forecasting the Remaining Useful Life of a Furnace Transformer Based on Online Monitoring Data," Energies, MDPI, vol. 16(12), pages 1-27, June.
    10. Lingjie Sun & Yingyi Liu & Boyang Zhang & Yuwei Shang & Haiwen Yuan & Zhao Ma, 2016. "An Integrated Decision-Making Model for Transformer Condition Assessment Using Game Theory and Modified Evidence Combination Extended by D Numbers," Energies, MDPI, vol. 9(9), pages 1-22, August.
    11. Jannis N. Kahlen & Michael Andres & Albert Moser, 2021. "Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault," Energies, MDPI, vol. 14(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4192-:d:833246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.