IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2255-d774875.html
   My bibliography  Save this article

Evaluation of the Communication Delay in a Hybrid Real-Time Simulator for Weak Grids

Author

Listed:
  • Sisi Pan

    (Department of Electrical Engineering, Yangzhou University, Yangzhou 225000, China)

  • Wei Jiang

    (Department of Electrical Engineering, Yangzhou University, Yangzhou 225000, China)

  • Ming Li

    (Department of Automation, Tsinghua University, Beijing 100000, China)

  • Hua Geng

    (Department of Automation, Tsinghua University, Beijing 100000, China)

  • Jieyun Wang

    (Department of Electronic and Electrical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow G1 1XQ, UK)

Abstract

Real-time Simulation (RTS) is one of the effective means via which to study device level or system level dynamics, such as power converter online testing, evaluation, and control, and power system stability analysis. The RTS -enabled design-chain offers a time -effective, low-cost, and fail-safe development process. As the penetration of renewable energy is becoming higher, the demand in hybrid system real-time simulation becomes imperative, where fast-dynamic device level power converters and slow -dynamic large -scale power systems are simulated at the same time. This paper introduces a novel hybrid real-time simulation architecture based on the central processing unit (CPU) and the field-programmable gate array (FPGA). Compared with the off-the-shelf power system real-time simulation system, it offers both wide time scale simulation and high accuracy. The multi-time scale model can perform electromechanical electromagnetic transient hybrid simulation, which can be applied to the research of power systems penetrated with power converters. In the proposed simulation platform, the communication delay is introduced when different RTS platforms exchange real-time data. The communication delay should be considered in the stability analysis of the grid-connected inverters in a weak grid environment. Based on the virtual impedance characteristic formed by the control loop with and without communication delay, the impedance characteristics are analyzed and inter-simulator delay impacts are revealed in this paper. Theoretical analysis indicates that the communication delay, contrary to expectation, can improve the virtual impedance characteristics of the system. With the same hardware simulation parameters, the grid-converter system is verified on both the Typhoon system alone and the Typhoon-dSPACE-SpaceR hybrid simulation platform. The THD value of grid current in a weak grid environment that works in the Typhoon system is 4.98%, and 2.38% in the Typhoon-dSPACE-SpaceR hybrid simulation platform. This study eventually reveals the fact that the inter-simulation delay creates the illusion that the control system built in the novel hybrid real-time simulation is more stable under weak grid conditions.

Suggested Citation

  • Sisi Pan & Wei Jiang & Ming Li & Hua Geng & Jieyun Wang, 2022. "Evaluation of the Communication Delay in a Hybrid Real-Time Simulator for Weak Grids," Energies, MDPI, vol. 15(6), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2255-:d:774875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2255/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2255/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adam Summers & Jay Johnson & Rachid Darbali-Zamora & Clifford Hansen & Jithendar Anandan & Chad Showalter, 2020. "A Comparison of DER Voltage Regulation Technologies Using Real-Time Simulations," Energies, MDPI, vol. 13(14), pages 1-26, July.
    2. Jiyoung Song & Kyeon Hur & Jeehoon Lee & Hyunjae Lee & Jaegul Lee & Solyoung Jung & Jeonghoon Shin & Heejin Kim, 2020. "Hardware-in-the-Loop Simulation Using Real-Time Hybrid-Simulator for Dynamic Performance Test of Power Electronics Equipment in Large Power System," Energies, MDPI, vol. 13(15), pages 1-16, August.
    3. Markus Mirz & Jan Dinkelbach & Antonello Monti, 2020. "DPsim—Advancements in Power Electronics Modelling Using Shifted Frequency Analysis and in Real-Time Simulation Capability by Parallelization," Energies, MDPI, vol. 13(15), pages 1-20, July.
    4. Baoling Guo & Amgad Mohamed & Seddik Bacha & Mazen Alamir & Cédric Boudinet & Julien Pouget, 2020. "Reduced-Scale Models of Variable Speed Hydro-Electric Plants for Power Hardware-in-the-Loop Real-Time Simulations," Energies, MDPI, vol. 13(21), pages 1-22, November.
    5. Kati Sidwall & Paul Forsyth, 2020. "Advancements in Real-Time Simulation for the Validation of Grid Modernization Technologies," Energies, MDPI, vol. 13(16), pages 1-17, August.
    6. Fabio D’Agostino & Daniele Kaza & Michele Martelli & Giacomo-Piero Schiapparelli & Federico Silvestro & Carlo Soldano, 2020. "Development of a Multiphysics Real-Time Simulator for Model-Based Design of a DC Shipboard Microgrid," Energies, MDPI, vol. 13(14), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meysam Yousefzadeh & Shahin Hedayati Kia & Mohammad Hoseintabar Marzebali & Davood Arab Khaburi & Hubert Razik, 2022. "Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines," Energies, MDPI, vol. 15(19), pages 1-17, September.
    2. Zhao Jin & Jie Zhang & Shuyuan Wang & Bingda Zhang, 2023. "Component-Oriented Modeling Method for Real-Time Simulation of Power Systems," Energies, MDPI, vol. 16(6), pages 1-19, March.
    3. Hossein Abedini & Tommaso Caldognetto & Paolo Mattavelli & Paolo Tenti, 2020. "Real-Time Validation of Power Flow Control Method for Enhanced Operation of Microgrids," Energies, MDPI, vol. 13(22), pages 1-19, November.
    4. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    5. Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
    6. Jaesik Kang, 2022. "Comprehensive Analysis of Transient Overvoltage Phenomena for Metal-Oxide Varistor Surge Arrester in LCC-HVDC Transmission System with Special Protection Scheme," Energies, MDPI, vol. 15(19), pages 1-17, September.
    7. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    8. Rachid Darbali-Zamora & Jay Johnson & Adam Summers & C. Birk Jones & Clifford Hansen & Chad Showalter, 2021. "State Estimation-Based Distributed Energy Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments Using a Real-Time Digital Twin," Energies, MDPI, vol. 14(3), pages 1-21, February.
    9. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2023. "Power Hardware-in-the-Loop (PHIL): A Review to Advance Smart Inverter-Based Grid-Edge Solutions," Energies, MDPI, vol. 16(2), pages 1-27, January.
    11. Jack Flicker & Jay Johnson & Peter Hacke & Ramanathan Thiagarajan, 2022. "Automating Component-Level Stress Measurements for Inverter Reliability Estimation," Energies, MDPI, vol. 15(13), pages 1-15, July.
    12. Jan Dinkelbach & Ghassen Nakti & Markus Mirz & Antonello Monti, 2021. "Simulation of Low Inertia Power Systems Based on Shifted Frequency Analysis," Energies, MDPI, vol. 14(7), pages 1-17, March.
    13. Cem Haydaroğlu & Bilal Gümüş, 2022. "Fault Detection in Distribution Network with the Cauchy-M Estimate—RVFLN Method," Energies, MDPI, vol. 16(1), pages 1-18, December.
    14. Saeed Golestan & Hessam Golmohamadi & Rakesh Sinha & Florin Iov & Birgitte Bak-Jensen, 2024. "Real-Time Simulation and Hardware-in-the-Loop Testing Based on OPAL-RT ePHASORSIM: A Review of Recent Advances and a Simple Validation in EV Charging Management Systems," Energies, MDPI, vol. 17(19), pages 1-25, September.
    15. Sami Bouzid & Philippe Viarouge & Jérôme Cros, 2020. "Real-Time Digital Twin of a Wound Rotor Induction Machine Based on Finite Element Method," Energies, MDPI, vol. 13(20), pages 1-18, October.
    16. Ye-Rin Kim & Jae-Myeong Kim & Jae-Jung Jung & So-Yeon Kim & Jae-Hak Choi & Hyun-Goo Lee, 2021. "Comprehensive Design of DC Shipboard Power Systems for Pure Electric Propulsion Ship Based on Battery Energy Storage System," Energies, MDPI, vol. 14(17), pages 1-28, August.
    17. Paweł Szcześniak & Iwona Grobelna & Mateja Novak & Ulrik Nyman, 2021. "Overview of Control Algorithm Verification Methods in Power Electronics Systems," Energies, MDPI, vol. 14(14), pages 1-20, July.
    18. Andrea Vicenzutti & Giorgio Sulligoi, 2021. "Electrical and Energy Systems Integration for Maritime Environment-Friendly Transportation," Energies, MDPI, vol. 14(21), pages 1-24, November.
    19. Jan Dinkelbach & Lennart Schumacher & Lukas Razik & Andrea Benigni & Antonello Monti, 2021. "Factorisation Path Based Refactorisation for High-Performance LU Decomposition in Real-Time Power System Simulation," Energies, MDPI, vol. 14(23), pages 1-18, November.
    20. Nur Najihah Abu Bakar & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Yun Yu & Abdullah Abusorrah & Yusuf A. Al-Turki, 2021. "A Review of the Conceptualization and Operational Management of Seaport Microgrids on the Shore and Seaside," Energies, MDPI, vol. 14(23), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2255-:d:774875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.