IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2930-d557484.html
   My bibliography  Save this article

Mathematical Modeling of the Dynamics of Linear Electrical Systems with Parallel Calculations

Author

Listed:
  • Sławomir Cieślik

    (Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland)

Abstract

The dynamics of power systems is often analyzed using real-time simulators. The basic requirements of these simulators are the speed of obtaining the results and their accuracy. Known algorithms (backward Euler or trapezoidal rule) used in real-time simulations force the integration time step to be reduced to obtain the appropriate accuracy, which extends the time of obtaining the results. The acceleration of obtaining the results is achieved by using parallel calculations. The paper presents an algorithm for mathematical modeling of the dynamics of linear electrical systems, which works stably with a relatively large integration time step and with accuracy much better than other algorithms widely described in the literature. The algorithm takes into account the possibility of using parallel calculations. The proposed algorithm combines the advantages of known methods used in the analysis of electrical circuits, such as nodal analysis, multi-terminal electrical component theory, and transient states analysis methods. However, the main advantage over other algorithms is the use of the method based on average voltages in the integration step (AVIS method). The attention was focused on the presentation of the scientifically acceptable general principle offered to mathematical modeling of dynamics of linear electrical systems with parallel computations. However, the evidence of its effective application in the analysis of the dynamics of electric power and electromechanical systems was indicated in the works carried out by the team of authors from the Institute of Electrical Engineering UTP University of Science and Technology in Bydgoszcz (Poland).

Suggested Citation

  • Sławomir Cieślik, 2021. "Mathematical Modeling of the Dynamics of Linear Electrical Systems with Parallel Calculations," Energies, MDPI, vol. 14(10), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2930-:d:557484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leonel Estrada & Nimrod Vázquez & Joaquín Vaquero & Ángel de Castro & Jaime Arau, 2020. "Real-Time Hardware in the Loop Simulation Methodology for Power Converters Using LabVIEW FPGA," Energies, MDPI, vol. 13(2), pages 1-19, January.
    2. Omelyan Plakhtyna & Andriy Kutsyk & Mykola Semeniuk, 2020. "Real-Time Models of Electromechanical Power Systems, Based on the Method of Average Voltages in Integration Step and Their Computer Application," Energies, MDPI, vol. 13(9), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Kłosowski & Sławomir Cieślik, 2021. "The Use of a Real-Time Simulator for Analysis of Power Grid Operation States with a Wind Turbine," Energies, MDPI, vol. 14(8), pages 1-27, April.
    2. Andriy Kutsyk & Mykola Semeniuk & Mariusz Korkosz & Grzegorz Podskarbi, 2021. "Diagnosis of the Static Excitation Systems of Synchronous Generators with the Use of Hardware-In-the-Loop Technologies," Energies, MDPI, vol. 14(21), pages 1-15, October.
    3. Ruyun Cheng & Li Yao & Xinyang Yan & Bingda Zhang & Zhao Jin, 2021. "High Flexibility Hybrid Architecture Real-Time Simulation Platform Based on Field-Programmable Gate Array (FPGA)," Energies, MDPI, vol. 14(19), pages 1-16, September.
    4. Meysam Yousefzadeh & Shahin Hedayati Kia & Mohammad Hoseintabar Marzebali & Davood Arab Khaburi & Hubert Razik, 2022. "Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines," Energies, MDPI, vol. 15(19), pages 1-17, September.
    5. Suparak Srita & Sakda Somkun & Tanakorn Kaewchum & Wattanapong Rakwichian & Peter Zacharias & Uthen Kamnarn & Jutturit Thongpron & Damrong Amorndechaphon & Matheepot Phattanasak, 2022. "Modeling, Simulation and Development of Grid-Connected Voltage Source Converter with Selective Harmonic Mitigation: HiL and Experimental Validations," Energies, MDPI, vol. 15(7), pages 1-28, March.
    6. Phuong-Ha La & Nguyen-Anh Nguyen & Sung-Jin Choi, 2024. "Average Model of Switched-Energy-Tank Battery Equalizer for Accelerated Performance Assessment," Energies, MDPI, vol. 17(3), pages 1-18, January.
    7. Jahangir Badar Soomro & Faheem Akhtar Chachar & Hafiz Mudassir Munir & Jamshed Ahmed Ansari & Amr S. Zalhaf & Mohammed Alqarni & Basem Alamri, 2022. "Efficient Hardware-in-the-Loop and Digital Control Techniques for Power Electronics Teaching," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    8. Jacek Kozyra & Andriy Lozynskyy & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Grzegorz Podskarbi & Yaroslav Paranchuk & Lidiia Kasha, 2022. "Combined Control System for the Coordinates of the Electric Mode in the Electrotechnological Complex “Arc Steel Furnace-Power-Supply Network”," Energies, MDPI, vol. 15(14), pages 1-21, July.
    9. Aleksandr Skamyin & Yaroslav Shklyarskiy & Vasiliy Dobush & Iuliia Dobush, 2021. "Experimental Determination of Parameters of Nonlinear Electrical Load," Energies, MDPI, vol. 14(22), pages 1-14, November.
    10. Andriy Kutsyk & Mariusz Korkosz & Mykola Semeniuk & Piotr Bogusz & Andriy Lozynskyy & Jacek Kozyra & Zbigniew Łukasik, 2022. "Electromagnetic and Electromechanical Compatibility Improvement of a Multi-Winding Switch Control-Based Induction Motor—Theoretical Description and Mathematical Modeling," Energies, MDPI, vol. 15(21), pages 1-23, October.
    11. Zhao Jin & Jie Zhang & Shuyuan Wang & Bingda Zhang, 2023. "Component-Oriented Modeling Method for Real-Time Simulation of Power Systems," Energies, MDPI, vol. 16(6), pages 1-19, March.
    12. Zbigniew Kłosowski & Maciej Fajfer & Zbigniew Ludwikowski, 2022. "Reduction of the Electromagnetic Torque Oscillation during the Direct on Line (DOL) Starting of a 6 kV Motor by Means of a Controlled Vacuum Circuit-Breaker," Energies, MDPI, vol. 15(12), pages 1-18, June.
    13. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    14. Hossein Abedini & Tommaso Caldognetto & Paolo Mattavelli & Paolo Tenti, 2020. "Real-Time Validation of Power Flow Control Method for Enhanced Operation of Microgrids," Energies, MDPI, vol. 13(22), pages 1-19, November.
    15. Andriy Lozynskyy & Jacek Kozyra & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Andriy Kutsyk & Yaroslav Paranchuk & Lidiia Kasha, 2022. "A Mathematical Model of Electrical Arc Furnaces for Analysis of Electrical Mode Parameters and Synthesis of Controlling Influences," Energies, MDPI, vol. 15(5), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2930-:d:557484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.