IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6746-d915825.html
   My bibliography  Save this article

Experimental Diagnosis of Broken Rotor Bar Faults in Induction Motors at Low Slip via Hilbert Envelope and Optimized Subtractive Clustering Adaptive Neuro-Fuzzy Inference System

Author

Listed:
  • Seif Eddine Chehaidia

    (Industrial Mechanics Laboratory, Badji Mokhtar Annaba University, Box 12, Annaba 23000, Algeria)

  • Hakima Cherif

    (LGEB Laboratory, Department of Electrical Engineering, Biskra University, Biskra 07000, Algeria)

  • Musfer Alraddadi

    (Yanbu Industrial College (YIC), Alnahdah, Yanbu Al Sinaiyah, Yanbu 46452, Saudi Arabia)

  • Mohamed Ibrahim Mosaad

    (Yanbu Industrial College (YIC), Alnahdah, Yanbu Al Sinaiyah, Yanbu 46452, Saudi Arabia)

  • Abdelaziz Mahmoud Bouchelaghem

    (Industrial Mechanics Laboratory, Badji Mokhtar Annaba University, Box 12, Annaba 23000, Algeria)

Abstract

Knowledge of the distinctive frequencies and amplitudes of broken rotor bar (BRB) faults in the induction motor (IM) is essential for most fault diagnosis methods. Fast Fourier transform (FFT) is widely applied to diagnose the faults within BRBs. However, this method does not provide satisfactory results if it is applied directly to the stator current signal at low slip because a high-resolution spectrum is required to separate the different components of the frequency. To address this problem, this paper proposes an efficient method based on a Hilbert fast Fourier transform (HFFT) approach, which is used to extract the envelope from the stator current using the Hilbert transform (HT) at low slip. Then, the stator current envelope is analyzed using the fast Fourier transform (FFT) to obtain the amplitude and frequency of the particular harmonic. These data were recently collected and selected as BRB fault features and were employed as adaptive neuro-fuzzy inference system (ANFIS) inputs for BRB fault autodiagnosis and classification. To identify the BRB defect by determining the number of broken bars in the rotor, two ANFIS models are proposed: ANFIS grid partitioning (ANFIS-GP) and ANFIS-subtractive clustering (ANFIS-SC). To validate the effectiveness of the proposed method, three different motors were used during experiments under various loads; the first was with one broken bar, the second was with two adjacent broken bars, and the third was a healthy motor. The obtained results confirmed the effectiveness and the robustness of the proposed method, which is based on the combination of HFFT-ANFIS-SC to diagnose the BRB faults and quantify the number of broken bars under different load conditions (under low and high slip) precisely with minimal errors (this method had an MSE of 10-14 and 10-7 for the RMSE) compared to the method based on the combination of HFFT-ANFIS-GP.

Suggested Citation

  • Seif Eddine Chehaidia & Hakima Cherif & Musfer Alraddadi & Mohamed Ibrahim Mosaad & Abdelaziz Mahmoud Bouchelaghem, 2022. "Experimental Diagnosis of Broken Rotor Bar Faults in Induction Motors at Low Slip via Hilbert Envelope and Optimized Subtractive Clustering Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 15(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6746-:d:915825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6746/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6746/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zuolu Wang & Jie Yang & Haiyang Li & Dong Zhen & Yuandong Xu & Fengshou Gu, 2019. "Fault Identification of Broken Rotor Bars in Induction Motors Using an Improved Cyclic Modulation Spectral Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    2. Cherif, Hakima & Benakcha, Abdelhamid & Laib, Ismail & Chehaidia, Seif Eddine & Menacer, Arezky & Soudan, Bassel & Olabi, A.G., 2020. "Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor," Energy, Elsevier, vol. 212(C).
    3. Xinyue Liu & Yan Yan & Kaibo Hu & Shan Zhang & Hongjie Li & Zhen Zhang & Tingna Shi, 2022. "Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition," Energies, MDPI, vol. 15(3), pages 1-16, February.
    4. Mikko Tahkola & Áron Szücs & Jari Halme & Akhtar Zeb & Janne Keränen, 2022. "A Novel Machine Learning-Based Approach for Induction Machine Fault Classifier Development—A Broken Rotor Bar Case Study," Energies, MDPI, vol. 15(9), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarahi Aguayo-Tapia & Gerardo Avalos-Almazan & Jose de Jesus Rangel-Magdaleno & Juan Manuel Ramirez-Cortes, 2023. "Physical Variable Measurement Techniques for Fault Detection in Electric Motors," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bon-Gwan Gu, 2022. "Development of Broken Rotor Bar Fault Diagnosis Method with Sum of Weighted Fourier Series Coefficients Square," Energies, MDPI, vol. 15(22), pages 1-12, November.
    2. Haiyang Li & Zuolu Wang & Dong Zhen & Fengshou Gu & Andrew Ball, 2019. "Modulation Sideband Separation Using the Teager–Kaiser Energy Operator for Rotor Fault Diagnostics of Induction Motors," Energies, MDPI, vol. 12(23), pages 1-16, November.
    3. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    4. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    5. Chao Fu & Dong Zhen & Yongfeng Yang & Fengshou Gu & Andrew Ball, 2019. "Effects of Bounded Uncertainties on the Dynamic Characteristics of an Overhung Rotor System with Rubbing Fault," Energies, MDPI, vol. 12(22), pages 1-15, November.
    6. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    7. Khaled Farag & Abdullah Shawier & Ayman S. Abdel-Khalik & Mohamed M. Ahmed & Shehab Ahmed, 2021. "Applicability Analysis of Indices-Based Fault Detection Technique of Six-Phase Induction Motor," Energies, MDPI, vol. 14(18), pages 1-23, September.
    8. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    9. Noman Shabbir & Lauri Kütt & Bilal Asad & Muhammad Jawad & Muhammad Naveed Iqbal & Kamran Daniel, 2021. "Spectrum Analysis for Condition Monitoring and Fault Diagnosis of Ventilation Motor: A Case Study," Energies, MDPI, vol. 14(7), pages 1-16, April.
    10. Toomas Vaimann & Jose Alfonso Antonino-Daviu & Anton Rassõlkin, 2023. "Novel Approaches to Electrical Machine Fault Diagnosis," Energies, MDPI, vol. 16(15), pages 1-4, July.
    11. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    12. Jie Ma & Yingxue Li & Liying Wang & Jisheng Hu & Hua Li & Jiyou Fei & Lin Li & Geng Zhao, 2023. "Stator ITSC Fault Diagnosis for EMU Induction Traction Motor Based on Goertzel Algorithm and Random Forest," Energies, MDPI, vol. 16(13), pages 1-17, June.
    13. Luis Alonso Trujillo Guajardo & Miguel Angel Platas Garza & Johnny Rodríguez Maldonado & Mario Alberto González Vázquez & Luis Humberto Rodríguez Alfaro & Fernando Salinas Salinas, 2022. "Prony Method Estimation for Motor Current Signal Analysis Diagnostics in Rotor Cage Induction Motors," Energies, MDPI, vol. 15(10), pages 1-24, May.
    14. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    15. Reza Bazghandi & Mohammad Hoseintabar Marzebali & Vahid Abolghasemi & Shahin Hedayati Kia, 2023. "A Novel Mode Un-Mixing Approach in Variational Mode Decomposition for Fault Detection in Wound Rotor Induction Machines," Energies, MDPI, vol. 16(14), pages 1-17, July.
    16. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6746-:d:915825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.