IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4949-d1179538.html
   My bibliography  Save this article

Stator ITSC Fault Diagnosis for EMU Induction Traction Motor Based on Goertzel Algorithm and Random Forest

Author

Listed:
  • Jie Ma

    (College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China
    Department of Railway Rolling Stock, Liaoning Railway Vocational and Technical College, Jinzhou 121000, China)

  • Yingxue Li

    (College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Liying Wang

    (College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Jisheng Hu

    (College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Hua Li

    (College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Jiyou Fei

    (College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Lin Li

    (College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Geng Zhao

    (College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116028, China)

Abstract

The stator winding insulation system is the most critical and weakest part of the EMU’s (electric multiple unit’s) traction motor. The effective diagnosis for stator ITSC (inter-turn short-circuit) faults can prevent a fault from expanding into phase-to-phase or ground short-circuits. The TCU (traction control unit) controls the traction inverter to output SPWM (sine pulse width modulation) excitation voltage when the traction motor is at a standstill. Three ITSC fault diagnostic conditions are based on different IGBTs’ control logics. The Goertzel algorithm is used to calculate the fundamental current amplitude difference Δ i and phase angle difference Δ θ of equivalent parallel windings under the three diagnostic conditions. The six parameters under the three diagnostic conditions are used as features to establish an ITSC fault diagnostic model based on the random forest. The proposed method was validated using a simulation experimental platform for the ITSC fault diagnosis of EMU traction motors. The experimental results indicate that the current amplitude features Δ i and phase angle features Δ θ change obviously with an increase in the ITSC fault extent if the ITSC fault occurs at the equivalent parallel windings. The accuracy of the ITSC fault diagnosis model based on the random forest for ITSC fault detection and location, both in train and test samples, is 100%.

Suggested Citation

  • Jie Ma & Yingxue Li & Liying Wang & Jisheng Hu & Hua Li & Jiyou Fei & Lin Li & Geng Zhao, 2023. "Stator ITSC Fault Diagnosis for EMU Induction Traction Motor Based on Goertzel Algorithm and Random Forest," Energies, MDPI, vol. 16(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4949-:d:1179538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitrios A. Papathanasopoulos & Konstantinos N. Giannousakis & Evangelos S. Dermatas & Epaminondas D. Mitronikas, 2021. "Vibration Monitoring for Position Sensor Fault Diagnosis in Brushless DC Motor Drives," Energies, MDPI, vol. 14(8), pages 1-24, April.
    2. Cherif, Hakima & Benakcha, Abdelhamid & Laib, Ismail & Chehaidia, Seif Eddine & Menacer, Arezky & Soudan, Bassel & Olabi, A.G., 2020. "Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Kolano & Bartosz Drzymała & Jakub Gęca, 2021. "Sinusoidal Control of a Brushless DC Motor with Misalignment of Hall Sensors," Energies, MDPI, vol. 14(13), pages 1-13, June.
    2. Olga A. Filina & Nikita V. Martyushev & Boris V. Malozyomov & Vadim Sergeevich Tynchenko & Viktor Alekseevich Kukartsev & Kirill Aleksandrovich Bashmur & Pavel P. Pavlov & Tatyana Aleksandrovna Panfil, 2023. "Increasing the Efficiency of Diagnostics in the Brush-Commutator Assembly of a Direct Current Electric Motor," Energies, MDPI, vol. 17(1), pages 1-24, December.
    3. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    4. Siddique Akbar & Toomas Vaimann & Bilal Asad & Ants Kallaste & Muhammad Usman Sardar & Karolina Kudelina, 2023. "State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions," Energies, MDPI, vol. 16(17), pages 1-44, September.
    5. Noman Shabbir & Lauri Kütt & Bilal Asad & Muhammad Jawad & Muhammad Naveed Iqbal & Kamran Daniel, 2021. "Spectrum Analysis for Condition Monitoring and Fault Diagnosis of Ventilation Motor: A Case Study," Energies, MDPI, vol. 14(7), pages 1-16, April.
    6. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    7. Seif Eddine Chehaidia & Hakima Cherif & Musfer Alraddadi & Mohamed Ibrahim Mosaad & Abdelaziz Mahmoud Bouchelaghem, 2022. "Experimental Diagnosis of Broken Rotor Bar Faults in Induction Motors at Low Slip via Hilbert Envelope and Optimized Subtractive Clustering Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 15(18), pages 1-22, September.
    8. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    9. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4949-:d:1179538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.