IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3481-d380748.html
   My bibliography  Save this article

Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors

Author

Listed:
  • Wagner Fontes Godoy

    (Department of Electrical Engineering, Av. Alberto Carazzai, Federal Technological University of Paraná (UTFPR), 1640, Centro, Cornélio Procópio 86.300-000, PR, Brazil)

  • Daniel Morinigo-Sotelo

    (Department of Electrical Engineering, Paseo del Cauce, 59, University of Valladolid (UVa), 47011 Valladolid, Spain)

  • Oscar Duque-Perez

    (Department of Electrical Engineering, Paseo del Cauce, 59, University of Valladolid (UVa), 47011 Valladolid, Spain)

  • Ivan Nunes da Silva

    (Department of Electrical Engineering, University of São Paulo (USP), São Carlos School of Engineering, Av. Trabalhador São Carlense, 400, Centro, São Carlos 13.566-590, SP, Brazil)

  • Alessandro Goedtel

    (Department of Electrical Engineering, Av. Alberto Carazzai, Federal Technological University of Paraná (UTFPR), 1640, Centro, Cornélio Procópio 86.300-000, PR, Brazil)

  • Rodrigo Henrique Cunha Palácios

    (Department of Electrical Engineering, Av. Alberto Carazzai, Federal Technological University of Paraná (UTFPR), 1640, Centro, Cornélio Procópio 86.300-000, PR, Brazil)

Abstract

This paper addresses a comprehensive evaluation of a bearing fault evolution and its consequent prediction concerning the remaining useful life. The proper prediction of bearing faults in their early stage is a crucial factor for predictive maintenance and mainly for the production management schedule. The detection and estimation of the progressive evolution of a bearing fault are performed by monitoring the amplitude of the current signals at the time domain. Data gathered from line-fed and inverter-fed three-phase induction motors were used to validate the proposed approach. To assess classification accuracy and fault estimation, the models described in this paper are investigated by using Artificial Neural Networks models. The paper also provides process flowcharts and classification tables to present the prognostic models used to estimate the remaining useful life of a defective bearing. Experimental results confirmed the method robustness and provide an accurate diagnosis regardless of the bearing fault stage, motor speed, load level, and type of supply.

Suggested Citation

  • Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3481-:d:380748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong-Chan Chang & Yu-Ming Jheng & Cheng-Chien Kuo & Yu-Min Hsueh, 2019. "Induction Motors Condition Monitoring System with Fault Diagnosis Using a Hybrid Approach," Energies, MDPI, vol. 12(8), pages 1-12, April.
    2. Shrinathan Esakimuthu Pandarakone & Yukio Mizuno & Hisahide Nakamura, 2019. "A Comparative Study between Machine Learning Algorithm and Artificial Intelligence Neural Network in Detecting Minor Bearing Fault of Induction Motors," Energies, MDPI, vol. 12(11), pages 1-14, June.
    3. Zuolu Wang & Jie Yang & Haiyang Li & Dong Zhen & Yuandong Xu & Fengshou Gu, 2019. "Fault Identification of Broken Rotor Bars in Induction Motors Using an Improved Cyclic Modulation Spectral Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    4. Tengda Huang & Sheng Fu & Haonan Feng & Jiafeng Kuang, 2019. "Bearing Fault Diagnosis Based on Shallow Multi-Scale Convolutional Neural Network with Attention," Energies, MDPI, vol. 12(20), pages 1-19, October.
    5. Xuejiao Ren & Ruifang Liu & Erle Yang, 2019. "Modelling of the Bearing Breakdown Resistance in Bearing Currents Problem of AC Motors," Energies, MDPI, vol. 12(6), pages 1-9, March.
    6. Marcin Skora & Pawel Ewert & Czeslaw T. Kowalski, 2019. "Selected Rolling Bearing Fault Diagnostic Methods in Wheel Embedded Permanent Magnet Brushless Direct Current Motors," Energies, MDPI, vol. 12(21), pages 1-19, November.
    7. Lanjun Wan & Hongyang Li & Yiwei Chen & Changyun Li, 2020. "Rolling Bearing Fault Prediction Method Based on QPSO-BP Neural Network and Dempster–Shafer Evidence Theory," Energies, MDPI, vol. 13(5), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    2. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.
    3. Haiyang Li & Zuolu Wang & Dong Zhen & Fengshou Gu & Andrew Ball, 2019. "Modulation Sideband Separation Using the Teager–Kaiser Energy Operator for Rotor Fault Diagnostics of Induction Motors," Energies, MDPI, vol. 12(23), pages 1-16, November.
    4. Hisahide Nakamura & Yukio Mizuno, 2022. "Diagnosis for Slight Bearing Fault in Induction Motor Based on Combination of Selective Features and Machine Learning," Energies, MDPI, vol. 15(2), pages 1-12, January.
    5. Chao Fu & Dong Zhen & Yongfeng Yang & Fengshou Gu & Andrew Ball, 2019. "Effects of Bounded Uncertainties on the Dynamic Characteristics of an Overhung Rotor System with Rubbing Fault," Energies, MDPI, vol. 12(22), pages 1-15, November.
    6. Min Yi & Wei Xie & Li Mo, 2021. "Short-Term Electricity Price Forecasting Based on BP Neural Network Optimized by SAPSO," Energies, MDPI, vol. 14(20), pages 1-17, October.
    7. Manje Yea & Ki Jin Han, 2020. "Modified Slot Opening for Reducing Shaft-to-Frame Voltage of AC Motors," Energies, MDPI, vol. 13(3), pages 1-9, February.
    8. Bon-Gwan Gu, 2022. "Development of Broken Rotor Bar Fault Diagnosis Method with Sum of Weighted Fourier Series Coefficients Square," Energies, MDPI, vol. 15(22), pages 1-12, November.
    9. Khaled Farag & Abdullah Shawier & Ayman S. Abdel-Khalik & Mohamed M. Ahmed & Shehab Ahmed, 2021. "Applicability Analysis of Indices-Based Fault Detection Technique of Six-Phase Induction Motor," Energies, MDPI, vol. 14(18), pages 1-23, September.
    10. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Carlos López-Torres & Antoni Garcia, 2019. "Detection of Inter-Turn Faults in Multi-Phase Ferrite-PM Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 12(14), pages 1-15, July.
    11. Mlungisi Ntombela & Kabeya Musasa, 2023. "Load Profile and Load Flow Analysis for a Grid System with Electric Vehicles Using a Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    12. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    13. Xiongchao Lin & Wenshuai Xi & Jinze Dai & Caihong Wang & Yonggang Wang, 2020. "Prediction of Slag Characteristics Based on Artificial Neural Network for Molten Gasification of Hazardous Wastes," Energies, MDPI, vol. 13(19), pages 1-18, October.
    14. Jia Luo & Jingying Huang & Jiancheng Ma & Siyuan Liu, 2024. "Application of self-attention conditional deep convolutional generative adversarial networks in the fault diagnosis of planetary gearboxes," Journal of Risk and Reliability, , vol. 238(2), pages 260-273, April.
    15. Bing Liu & Jichong Lei & Jinsen Xie & Jianliang Zhou, 2022. "Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning," Energies, MDPI, vol. 15(22), pages 1-15, November.
    16. Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
    17. Arkadiusz Duda & Maciej Sułowicz, 2020. "A New Effective Method of Induction Machine Condition Assessment Based on Zero-Sequence Voltage (ZSV) Symptoms," Energies, MDPI, vol. 13(14), pages 1-26, July.
    18. Seif Eddine Chehaidia & Hakima Cherif & Musfer Alraddadi & Mohamed Ibrahim Mosaad & Abdelaziz Mahmoud Bouchelaghem, 2022. "Experimental Diagnosis of Broken Rotor Bar Faults in Induction Motors at Low Slip via Hilbert Envelope and Optimized Subtractive Clustering Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 15(18), pages 1-22, September.
    19. Minghui Wang & Yongxiang Xu & Jibin Zou, 2019. "Sliding-Mode-Observer-Based Open-Switch Diagnostic Method for Permanent Magnet Synchronous Motor Drive Connected with LC Filter," Energies, MDPI, vol. 12(17), pages 1-19, August.
    20. Waseem El Sayed & Mostafa Abd El Geliel & Ahmed Lotfy, 2020. "Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter," Energies, MDPI, vol. 13(11), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3481-:d:380748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.