IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p2001-d530333.html
   My bibliography  Save this article

Spectrum Analysis for Condition Monitoring and Fault Diagnosis of Ventilation Motor: A Case Study

Author

Listed:
  • Noman Shabbir

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Lauri Kütt

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Bilal Asad

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Muhammad Jawad

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan)

  • Muhammad Naveed Iqbal

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Kamran Daniel

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia
    Department of Electrical Engineering, University of Engineering & Technology, Lahore 54890, Pakistan)

Abstract

In modern power systems, since most loads are inductive by nature, there is an ongoing power quality issue and researchers’ interest in improving the power factor is widespread, as inductive loads have a low power factor that depletes the system’s capacity and has an adverse effect on the voltage level. The measurement and acute analysis of voltage- and current-level waveforms is essential to tackle power quality issues. This article presents a detailed case study and analysis of real-time data measured from a frequency converter, which is used to operate the motor of a ventilation system. The output of the frequency converter is a highly distorted current wave. A hybrid Fourier transform (FT)- and wavelet transform-based solution has been proposed here to diagnose and identify the causes of motor failure in the ventilation system. The traditional FT did not give a detailed analysis of this type of signal, which is highly contaminated by noise. Therefore, first, the signal is preprocessed for data denoising using the wavelet transform. Second, the Fourier analysis is performed on the filtered signal for frequency analysis and segregation of fundamental frequency components, higher-order harmonics, and suppressed noise. The spectrum analysis reveals that the noise is generated due to the rapidly switching circuits in the frequency converter and this unfiltered signal at the output of the frequency converter causes motor failure.

Suggested Citation

  • Noman Shabbir & Lauri Kütt & Bilal Asad & Muhammad Jawad & Muhammad Naveed Iqbal & Kamran Daniel, 2021. "Spectrum Analysis for Condition Monitoring and Fault Diagnosis of Ventilation Motor: A Case Study," Energies, MDPI, vol. 14(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:2001-:d:530333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/2001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/2001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cherif, Hakima & Benakcha, Abdelhamid & Laib, Ismail & Chehaidia, Seif Eddine & Menacer, Arezky & Soudan, Bassel & Olabi, A.G., 2020. "Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    2. Seif Eddine Chehaidia & Hakima Cherif & Musfer Alraddadi & Mohamed Ibrahim Mosaad & Abdelaziz Mahmoud Bouchelaghem, 2022. "Experimental Diagnosis of Broken Rotor Bar Faults in Induction Motors at Low Slip via Hilbert Envelope and Optimized Subtractive Clustering Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 15(18), pages 1-22, September.
    3. Jie Ma & Yingxue Li & Liying Wang & Jisheng Hu & Hua Li & Jiyou Fei & Lin Li & Geng Zhao, 2023. "Stator ITSC Fault Diagnosis for EMU Induction Traction Motor Based on Goertzel Algorithm and Random Forest," Energies, MDPI, vol. 16(13), pages 1-17, June.
    4. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    5. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:2001-:d:530333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.