IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6139-d896108.html
   My bibliography  Save this article

High-Dimensional Energy Consumption Anomaly Detection: A Deep Learning-Based Method for Detecting Anomalies

Author

Listed:
  • Haipeng Pan

    (School of Mechanical and Automatic, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Zhongqian Yin

    (School of Mechanical and Automatic, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Xianzhi Jiang

    (School of Mechanical and Automatic, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract

With the increase of energy demand, energy wasteful behavior is inevitable. To reduce energy waste, it is crucial to understand users’ electricity consumption habits and detect abnormal usage behavior in a timely manner. This study proposes a high-dimensional energy consumption anomaly detection method based on deep learning. The method uses high-dimensional energy consumption related data to predict users’ electricity consumption in real time and for anomaly detection. The test results of the method on a publicly available dataset show that it can effectively detect abnormal electricity usage behavior of users. The results show that the method is useful in establishing a real-time anomaly detection system in buildings, helping building managers to identify abnormal electricity usage by users. In addition, users can also use the system to understand their electricity usage and reduce energy waste.

Suggested Citation

  • Haipeng Pan & Zhongqian Yin & Xianzhi Jiang, 2022. "High-Dimensional Energy Consumption Anomaly Detection: A Deep Learning-Based Method for Detecting Anomalies," Energies, MDPI, vol. 15(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6139-:d:896108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree," Applied Energy, Elsevier, vol. 267(C).
    2. Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuping Zou & Rui Wu & Xuesong Tian & Hua Li, 2023. "Realizing the Improvement of the Reliability and Efficiency of Intelligent Electricity Inspection: IAOA-BP Algorithm for Anomaly Detection," Energies, MDPI, vol. 16(7), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    2. Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
    3. Changho Shin & Seungeun Rho & Hyoseop Lee & Wonjong Rhee, 2019. "Data Requirements for Applying Machine Learning to Energy Disaggregation," Energies, MDPI, vol. 12(9), pages 1-19, May.
    4. Filipe Quintal & Daniel Garigali & Dino Vasconcelos & Jonathan Cavaleiro & Wilson Santos & Lucas Pereira, 2021. "Energy Monitoring in the Wild: Platform Development and Lessons Learned from a Real-World Demonstrator," Energies, MDPI, vol. 14(18), pages 1-15, September.
    5. Purna Prakash Kasaraneni & Venkata Pavan Kumar Yellapragada & Ganesh Lakshmana Kumar Moganti & Aymen Flah, 2022. "Analytical Enumeration of Redundant Data Anomalies in Energy Consumption Readings of Smart Buildings with a Case Study of Darmstadt Smart City in Germany," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    6. Todic, Tamara & Stankovic, Vladimir & Stankovic, Lina, 2023. "An active learning framework for the low-frequency Non-Intrusive Load Monitoring problem," Applied Energy, Elsevier, vol. 341(C).
    7. Jieyi Kang & David Reiner, 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Working Papers EPRG2114, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
    9. Li, Dandan & Li, Jiangfeng & Zeng, Xin & Stankovic, Vladimir & Stankovic, Lina & Xiao, Changjiang & Shi, Qingjiang, 2023. "Transfer learning for multi-objective non-intrusive load monitoring in smart building," Applied Energy, Elsevier, vol. 329(C).
    10. Dasappa, Nirupam Sannagowdara & Kumar G, Krishna & Somu, Nivethitha, 2024. "Multi-sensor data fusion framework for energy optimization in smart homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    11. Kong, Jun & Jiang, Wen & Tian, Qing & Jiang, Min & Liu, Tianshan, 2023. "Anomaly detection based on joint spatio-temporal learning for building electricity consumption," Applied Energy, Elsevier, vol. 334(C).
    12. Liu, Yu & Liu, Wei & Shen, Yiwen & Zhao, Xin & Gao, Shan, 2021. "Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations," Applied Energy, Elsevier, vol. 287(C).
    13. Li, Chuyi & Zheng, Kedi & Guo, Hongye & Chen, Qixin, 2023. "A mixed-integer programming approach for industrial non-intrusive load monitoring," Applied Energy, Elsevier, vol. 330(PA).
    14. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    15. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree," Applied Energy, Elsevier, vol. 267(C).
    16. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    17. Zhao, Bochao & Ye, Minxiang & Stankovic, Lina & Stankovic, Vladimir, 2020. "Non-intrusive load disaggregation solutions for very low-rate smart meter data," Applied Energy, Elsevier, vol. 268(C).
    18. Tomasz Jasiński, 2020. "Modelling the Disaggregated Demand for Electricity in Residential Buildings Using Artificial Neural Networks (Deep Learning Approach)," Energies, MDPI, vol. 13(5), pages 1-16, March.
    19. Wang, Gang & Li, Zhao & Luo, Zhao & Zhang, Tao & Lin, Mingliang & Li, Jiahao & Shen, Xin, 2024. "Dynamic adaptive event detection strategy based on power change-point weighting model," Applied Energy, Elsevier, vol. 361(C).
    20. Minkyu Kim & Chankook Park, 2021. "Academic Topics Related to Household Energy Consumption Using the Future Sign Detection Technique," Energies, MDPI, vol. 14(24), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6139-:d:896108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.