IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics030626192201892x.html
   My bibliography  Save this article

Anomaly detection based on joint spatio-temporal learning for building electricity consumption

Author

Listed:
  • Kong, Jun
  • Jiang, Wen
  • Tian, Qing
  • Jiang, Min
  • Liu, Tianshan

Abstract

The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets.

Suggested Citation

  • Kong, Jun & Jiang, Wen & Tian, Qing & Jiang, Min & Liu, Tianshan, 2023. "Anomaly detection based on joint spatio-temporal learning for building electricity consumption," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s030626192201892x
    DOI: 10.1016/j.apenergy.2022.120635
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201892X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viegas, Joaquim L. & Esteves, Paulo R. & Melício, R. & Mendes, V.M.F. & Vieira, Susana M., 2017. "Solutions for detection of non-technical losses in the electricity grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1256-1268.
    2. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    3. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree," Applied Energy, Elsevier, vol. 267(C).
    4. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2020. "The relationship between air pollution and COVID-19-related deaths: An application to three French cities," Applied Energy, Elsevier, vol. 279(C).
    5. Wang, Xinlin & Ahn, Sung-Hoon, 2020. "Real-time prediction and anomaly detection of electrical load in a residential community," Applied Energy, Elsevier, vol. 259(C).
    6. Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
    7. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    2. Yang, Kaixiang & Chen, Wuxing & Bi, Jichao & Wang, Mengzhi & Luo, Fengji, 2023. "Multi-view broad learning system for electricity theft detection," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
    2. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    3. Wang, Xinlin & Flores, Robert & Brouwer, Jack & Papaefthymiou, Marios, 2022. "Real-time detection of electrical load anomalies through hyperdimensional computing," Energy, Elsevier, vol. 261(PA).
    4. Liu, Jiangyan & Li, Guannan & Liu, Bin & Li, Kuining & Chen, Huanxin, 2019. "Knowledge discovery of data-driven-based fault diagnostics for building energy systems: A case study of the building variable refrigerant flow system," Energy, Elsevier, vol. 174(C), pages 873-885.
    5. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    6. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    7. Netzah Calamaro & Yuval Beck & Ran Ben Melech & Doron Shmilovitz, 2021. "An Energy-Fraud Detection-System Capable of Distinguishing Frauds from Other Energy Flow Anomalies in an Urban Environment," Sustainability, MDPI, vol. 13(19), pages 1-38, September.
    8. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    9. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    10. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    11. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    12. Zaffar Ahmed Shaikh & Polina Datsyuk & Laura M. Baitenova & Larisa Belinskaja & Natalia Ivolgina & Gulmira Rysmakhanova & Tomonobu Senjyu, 2022. "Effect of the COVID-19 Pandemic on Renewable Energy Firm’s Profitability and Capitalization," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    13. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    14. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    15. Michel Noussan & Benedetto Nastasi, 2018. "Data Analysis of Heating Systems for Buildings—A Tool for Energy Planning, Policies and Systems Simulation," Energies, MDPI, vol. 11(1), pages 1-15, January.
    16. Samany, Najmeh Neysani & Toomanian, Ara & Maher, Ali & Hanani, Khatereh & Zali, Ali Reza, 2021. "The most places at risk surrounding the COVID-19 treatment hospitals in an urban environment- case study: Tehran city," Land Use Policy, Elsevier, vol. 109(C).
    17. Barreneche, Camila & Navarro, Lidia & de Gracia, Alvaro & Fernández, A. Inés & Cabeza, Luisa F., 2016. "In situ thermal and acoustic performance and environmental impact of the introduction of a shape-stabilized PCM layer for building applications," Renewable Energy, Elsevier, vol. 85(C), pages 281-286.
    18. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Ekmekci, Ece & Ozturk, Z. Fatih & Sisman, Altug, 2023. "Collective behavior of boreholes and its optimization to maximize BTES performance," Applied Energy, Elsevier, vol. 343(C).
    20. Przemysław Śleszyński & Amir Reza Khavarian-Garmsir & Maciej Nowak & Paulina Legutko-Kobus & Mohammad Hajian Hossein Abadi & Noura Al Nasiri, 2023. "COVID-19 Spatial Policy: A Comparative Review of Urban Policies in the European Union and the Middle East," Sustainability, MDPI, vol. 15(3), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s030626192201892x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.