NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
- Dinesh, Chinthaka & Welikala, Shirantha & Liyanage, Yasitha & Ekanayake, Mervyn Parakrama B. & Godaliyadda, Roshan Indika & Ekanayake, Janaka, 2017. "Non-intrusive load monitoring under residential solar power influx," Applied Energy, Elsevier, vol. 205(C), pages 1068-1080.
- Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
- Zhuang Zheng & Hainan Chen & Xiaowei Luo, 2018. "A Supervised Event-Based Non-Intrusive Load Monitoring for Non-Linear Appliances," Sustainability, MDPI, vol. 10(4), pages 1-28, March.
- Esa, Nur Farahin & Abdullah, Md Pauzi & Hassan, Mohammad Yusri, 2016. "A review disaggregation method in Non-intrusive Appliance Load Monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 163-173.
- Hsueh-Hsien Chang, 2012. "Non-Intrusive Demand Monitoring and Load Identification for Energy Management Systems Based on Transient Feature Analyses," Energies, MDPI, vol. 5(11), pages 1-21, November.
- Kofi Afrifa Agyeman & Sekyung Han & Soohee Han, 2015. "Real-Time Recognition Non-Intrusive Electrical Appliance Monitoring Algorithm for a Residential Building Energy Management System," Energies, MDPI, vol. 8(9), pages 1-20, August.
- Paula Meehan & Conor McArdle & Stephen Daniels, 2014. "An Efficient, Scalable Time-Frequency Method for Tracking Energy Usage of Domestic Appliances Using a Two-Step Classification Algorithm," Energies, MDPI, vol. 7(11), pages 1-26, October.
- Hui He & Zixuan Liu & Runhai Jiao & Guangwei Yan, 2019. "A Novel Nonintrusive Load Monitoring Approach based on Linear-Chain Conditional Random Fields," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Malik, Anam & Haghdadi, Navid & MacGill, Iain & Ravishankar, Jayashri, 2019. "Appliance level data analysis of summer demand reduction potential from residential air conditioner control," Applied Energy, Elsevier, vol. 235(C), pages 776-785.
- Qian Wu & Fei Wang, 2019. "Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background," Energies, MDPI, vol. 12(8), pages 1-17, April.
- Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.
- Hosseini, Sayed Saeed & Agbossou, Kodjo & Kelouwani, Sousso & Cardenas, Alben, 2017. "Non-intrusive load monitoring through home energy management systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1266-1274.
- Hamid R. Khosravani & María Del Mar Castilla & Manuel Berenguel & Antonio E. Ruano & Pedro M. Ferreira, 2016. "A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building," Energies, MDPI, vol. 9(1), pages 1-24, January.
- Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
- Cominola, A. & Giuliani, M. & Piga, D. & Castelletti, A. & Rizzoli, A.E., 2017. "A Hybrid Signature-based Iterative Disaggregation algorithm for Non-Intrusive Load Monitoring," Applied Energy, Elsevier, vol. 185(P1), pages 331-344.
- Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
- Anwar Ul Haq & Hans-Arno Jacobsen, 2018. "Prospects of Appliance-Level Load Monitoring in Off-the-Shelf Energy Monitors: A Technical Review," Energies, MDPI, vol. 11(1), pages 1-22, January.
- Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
- Thi-Thu-Huong Le & Howon Kim, 2018. "Non-Intrusive Load Monitoring Based on Novel Transient Signal in Household Appliances with Low Sampling Rate," Energies, MDPI, vol. 11(12), pages 1-35, December.
- Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
- Aggelos S. Bouhouras & Paschalis A. Gkaidatzis & Konstantinos C. Chatzisavvas & Evangelos Panagiotou & Nikolaos Poulakis & Georgios C. Christoforidis, 2017. "Load Signature Formulation for Non-Intrusive Load Monitoring Based on Current Measurements," Energies, MDPI, vol. 10(4), pages 1-21, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
- Tomasz Jasiński, 2020. "Modelling the Disaggregated Demand for Electricity in Residential Buildings Using Artificial Neural Networks (Deep Learning Approach)," Energies, MDPI, vol. 13(5), pages 1-16, March.
- Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
- Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree," Applied Energy, Elsevier, vol. 267(C).
- Wesley Angelino de Souza & Fernando Deluno Garcia & Fernando Pinhabel Marafão & Luiz Carlos Pereira da Silva & Marcelo Godoy Simões, 2019. "Load Disaggregation Using Microscopic Power Features and Pattern Recognition," Energies, MDPI, vol. 12(14), pages 1-18, July.
- Younghoon Kwak & Jihyun Hwang & Taewon Lee, 2018. "Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building," Energies, MDPI, vol. 11(4), pages 1-22, April.
- Zheng, Zhuang & Sun, Zhankun & Pan, Jia & Luo, Xiaowei, 2021. "An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems," Applied Energy, Elsevier, vol. 298(C).
- Wang, Shuangyuan & Li, Ran & Evans, Adrian & Li, Furong, 2020. "Regional nonintrusive load monitoring for low voltage substations and distributed energy resources," Applied Energy, Elsevier, vol. 260(C).
- Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
- Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
- Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
- Muhammad Majid Hussain & Rizwan Akram & Zulfiqar Ali Memon & Mian Hammad Nazir & Waqas Javed & Muhammad Siddique, 2021. "Demand Side Management Techniques for Home Energy Management Systems for Smart Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
- da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Liu, Yu & Liu, Wei & Shen, Yiwen & Zhao, Xin & Gao, Shan, 2021. "Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations," Applied Energy, Elsevier, vol. 287(C).
- Liu, Yu & Liu, Congxiao & Ling, Qicheng & Zhao, Xin & Gao, Shan & Huang, Xueliang, 2021. "Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring," Applied Energy, Elsevier, vol. 303(C).
- Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
- Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
- Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
More about this item
Keywords
non-intrusive load monitoring; home energy management systems; ambient assisted living; demand response; machine learning; internet of things; smart grids;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2203-:d:238540. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.