An active learning framework for the low-frequency Non-Intrusive Load Monitoring problem
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.121078
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Bochao & Ye, Minxiang & Stankovic, Lina & Stankovic, Vladimir, 2020. "Non-intrusive load disaggregation solutions for very low-rate smart meter data," Applied Energy, Elsevier, vol. 268(C).
- İsmail Hakkı ÇAVDAR & Vahid FARYAD, 2019. "New Design of a Supervised Energy Disaggregation Model Based on the Deep Neural Network for a Smart Grid," Energies, MDPI, vol. 12(7), pages 1-18, March.
- Shi, Xin & Ming, Hao & Shakkottai, Srinivas & Xie, Le & Yao, Jianguo, 2019. "Nonintrusive load monitoring in residential households with low-resolution data," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Luan, Wenpeng & Wei, Zun & Liu, Bo & Yu, Yixin, 2022. "Non-intrusive power waveform modeling and identification of air conditioning load," Applied Energy, Elsevier, vol. 324(C).
- Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
- Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree," Applied Energy, Elsevier, vol. 267(C).
- Stankovic, L. & Stankovic, V. & Liao, J. & Wilson, C., 2016. "Measuring the energy intensity of domestic activities from smart meter data," Applied Energy, Elsevier, vol. 183(C), pages 1565-1580.
- Liu, Chao & Akintayo, Adedotun & Jiang, Zhanhong & Henze, Gregor P. & Sarkar, Soumik, 2018. "Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network," Applied Energy, Elsevier, vol. 211(C), pages 1106-1122.
- Patrick Huber & Alberto Calatroni & Andreas Rumsch & Andrew Paice, 2021. "Review on Deep Neural Networks Applied to Low-Frequency NILM," Energies, MDPI, vol. 14(9), pages 1-34, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Meng Yang & Zhiyou Cheng & Xinyuan Liu, 2024. "A Non-Intrusive Load Decomposition Model Based on Multiple Electrical Parameters to Point," Energies, MDPI, vol. 17(17), pages 1-25, September.
- Kaneko, Naoya & Okazawa, Kazuki & Zhao, Dafang & Nishikawa, Hiroki & Taniguchi, Ittetsu & Murayama, Hiroyuki & Yura, Yoshinori & Okamoto, Masakazu & Catthoor, Francky & Onoye, Takao, 2024. "Non-intrusive thermal load disaggregation and forecasting for effective HVAC systems," Applied Energy, Elsevier, vol. 367(C).
- Wang, Gang & Li, Zhao & Luo, Zhao & Zhang, Tao & Lin, Mingliang & Li, Jiahao & Shen, Xin, 2024. "Dynamic adaptive event detection strategy based on power change-point weighting model," Applied Energy, Elsevier, vol. 361(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Dandan & Li, Jiangfeng & Zeng, Xin & Stankovic, Vladimir & Stankovic, Lina & Xiao, Changjiang & Shi, Qingjiang, 2023. "Transfer learning for multi-objective non-intrusive load monitoring in smart building," Applied Energy, Elsevier, vol. 329(C).
- Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
- Liu, Yu & Liu, Wei & Shen, Yiwen & Zhao, Xin & Gao, Shan, 2021. "Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations," Applied Energy, Elsevier, vol. 287(C).
- Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
- İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
- Apostolos Vavouris & Benjamin Garside & Lina Stankovic & Vladimir Stankovic, 2022. "Low-Frequency Non-Intrusive Load Monitoring of Electric Vehicles in Houses with Solar Generation: Generalisability and Transferability," Energies, MDPI, vol. 15(6), pages 1-27, March.
- Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
- Jiateng Song & Hongbin Wang & Mingxing Du & Lei Peng & Shuai Zhang & Guizhi Xu, 2021. "Non-Intrusive Load Identification Method Based on Improved Long Short Term Memory Network," Energies, MDPI, vol. 14(3), pages 1-15, January.
- Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
- Li, Chuyi & Zheng, Kedi & Guo, Hongye & Chen, Qixin, 2023. "A mixed-integer programming approach for industrial non-intrusive load monitoring," Applied Energy, Elsevier, vol. 330(PA).
- Patrick Huber & Alberto Calatroni & Andreas Rumsch & Andrew Paice, 2021. "Review on Deep Neural Networks Applied to Low-Frequency NILM," Energies, MDPI, vol. 14(9), pages 1-34, April.
- Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.
- Akeratana Noppakant & Boonyang Plangklang, 2022. "Improving Energy Management through Demand Response Programs for Low-Rise University Buildings," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
- Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili, 2022. "Non-Intrusive Load Monitoring of Household Devices Using a Hybrid Deep Learning Model through Convex Hull-Based Data Selection," Energies, MDPI, vol. 15(3), pages 1-22, February.
- Muhammad Asif Ali Rehmani & Saad Aslam & Shafiqur Rahman Tito & Snjezana Soltic & Pieter Nieuwoudt & Neel Pandey & Mollah Daud Ahmed, 2021. "Power Profile and Thresholding Assisted Multi-Label NILM Classification," Energies, MDPI, vol. 14(22), pages 1-18, November.
- Violeta Mihaela Dincă & Mihail Busu & Zoltan Nagy-Bege, 2022. "Determinants with Impact on Romanian Consumers’ Energy-Saving Habits," Energies, MDPI, vol. 15(11), pages 1-18, June.
- Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
- Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
- Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Shi, Xin & Ming, Hao & Shakkottai, Srinivas & Xie, Le & Yao, Jianguo, 2019. "Nonintrusive load monitoring in residential households with low-resolution data," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
More about this item
Keywords
Active learning; Deep learning; Load disaggregation; NILM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004427. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.