IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5786-d635007.html
   My bibliography  Save this article

Energy Monitoring in the Wild: Platform Development and Lessons Learned from a Real-World Demonstrator

Author

Listed:
  • Filipe Quintal

    (ITI, LARSyS, Universidade da Madeira, 9000-072 Funchal, Portugal)

  • Daniel Garigali

    (ITI, LARSyS, Universidade da Madeira, 9000-072 Funchal, Portugal
    These authors contributed equally to this work.)

  • Dino Vasconcelos

    (ITI, LARSyS, Universidade da Madeira, 9000-072 Funchal, Portugal
    These authors contributed equally to this work.)

  • Jonathan Cavaleiro

    (ITI, LARSyS, Universidade da Madeira, 9000-072 Funchal, Portugal
    These authors contributed equally to this work.)

  • Wilson Santos

    (prsma.com, 9020-105 Funchal, Portugal
    These authors contributed equally to this work.)

  • Lucas Pereira

    (ITI, LARSyS, Universidade da Madeira, 9000-072 Funchal, Portugal
    ITI, LARSyS, Técnico Lisboa, 1049-001 Lisboa, Portugal)

Abstract

This paper presents the development and evaluation of EnnerSpectrum, a platform for electricity monitoring. The development was motivated by a gap between academic, fully custom-made monitoring solutions and commercial proprietary monitoring approaches. EnnerSpectrum is composed of two main entities, the back end, and the Gateway. The back end is a server comprised of flexible entities that can be configured to different monitoring scenarios. The Gateway interacts with equipment at a site that cannot interact directly with the back end. The paper presents the architecture and configuration of EnnerSpectrum for a long-term case study with 13 prosumers of electricity for approximately 36 months. During this period, the proposed system was able to adapt to several building and monitoring conditions while acquiring 95% of all the available consumption data. To finalize, the paper presents a set of lessons learned from running such a long-term study in the real world.

Suggested Citation

  • Filipe Quintal & Daniel Garigali & Dino Vasconcelos & Jonathan Cavaleiro & Wilson Santos & Lucas Pereira, 2021. "Energy Monitoring in the Wild: Platform Development and Lessons Learned from a Real-World Demonstrator," Energies, MDPI, vol. 14(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5786-:d:635007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Sadiq Ahmad & Ayaz Ahmad & Muhammad Naeem & Waleed Ejaz & Hyung Seok Kim, 2018. "A Compendium of Performance Metrics, Pricing Schemes, Optimization Objectives, and Solution Methodologies of Demand Side Management for the Smart Grid," Energies, MDPI, vol. 11(10), pages 1-33, October.
    3. Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.
    4. Schultz, P. Wesley & Estrada, Mica & Schmitt, Joseph & Sokoloski, Rebecca & Silva-Send, Nilmini, 2015. "Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms," Energy, Elsevier, vol. 90(P1), pages 351-358.
    5. Marisca Zweistra & Stan Janssen & Frank Geerts, 2020. "Large Scale Smart Charging of Electric Vehicles in Practice," Energies, MDPI, vol. 13(2), pages 1-13, January.
    6. Abdulsalam S. Alghamdi, 2019. "Potential for Rooftop-Mounted PV Power Generation to Meet Domestic Electrical Demand in Saudi Arabia: Case Study of a Villa in Jeddah," Energies, MDPI, vol. 12(23), pages 1-29, November.
    7. Benjamin Völker & Andreas Reinhardt & Anthony Faustine & Lucas Pereira, 2021. "Watt’s up at Home? Smart Meter Data Analytics from a Consumer-Centric Perspective," Energies, MDPI, vol. 14(3), pages 1-21, January.
    8. Wojciech Cieslik & Filip Szwajca & Wojciech Golimowski & Andrew Berger, 2021. "Experimental Analysis of Residential Photovoltaic (PV) and Electric Vehicle (EV) Systems in Terms of Annual Energy Utilization," Energies, MDPI, vol. 14(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filipe Quintal, 2022. "Energy Monitoring Technologies," Energies, MDPI, vol. 15(16), pages 1-2, August.
    2. Senthil Prabu Ramalingam & Prabhakar Karthikeyan Shanmugam, 2022. "Hardware Implementation of a Home Energy Management System Using Remodeled Sperm Swarm Optimization (RMSSO) Algorithm," Energies, MDPI, vol. 15(14), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Cieslik & Filip Szwajca & Sławomir Rosolski & Michał Rutkowski & Katarzyna Pietrzak & Jakub Wójtowicz, 2022. "Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    2. Alla Polyanska & Maksym Andriiovych & Natalia Generowicz & Joanna Kulczycka & Vladyslav Psyuk, 2022. "Gamification as an Improvement Tool for HR Management in the Energy Industry—A Case Study of the Ukrainian Market," Energies, MDPI, vol. 15(4), pages 1-18, February.
    3. Ana Carolina Kulik & Édwin Augusto Tonolo & Alberto Kisner Scortegagna & Jardel Eugênio da Silva & Jair Urbanetz Junior, 2021. "Analysis of Scenarios for the Insertion of Electric Vehicles in Conjunction with a Solar Carport in the City of Curitiba, Paraná—Brazil," Energies, MDPI, vol. 14(16), pages 1-15, August.
    4. Carlos Cruz & Esther Palomar & Ignacio Bravo & Alfredo Gardel, 2020. "Cooperative Demand Response Framework for a Smart Community Targeting Renewables: Testbed Implementation and Performance Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    5. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    6. Athanasiadis, C.L. & Papadopoulos, T.A. & Kryonidis, G.C. & Doukas, D.I., 2024. "A review of distribution network applications based on smart meter data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    9. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    10. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    11. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.
    12. Magnus Bergquist & Andreas Nilsson & Emma Ejelöv, 2019. "Contest-Based and Norm-Based Interventions: (How) Do They Differ in Attitudes, Norms, and Behaviors?," Sustainability, MDPI, vol. 11(2), pages 1-17, January.
    13. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Ioanna-M. Chatzigeorgiou & Christos Diou & Kyriakos C. Chatzidimitriou & Georgios T. Andreou, 2021. "Demand Response Alert Service Based on Appliance Modeling," Energies, MDPI, vol. 14(10), pages 1-15, May.
    15. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    16. Mahmoud H. Elkholy & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Abdelrahman Elgarhy & Nehad S. Ali & Tamer S. Gaafar, 2022. "Design and Implementation of a Real-Time Smart Home Management System Considering Energy Saving," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    17. Kazmi, Hussain & Munné-Collado, Íngrid & Mehmood, Fahad & Syed, Tahir Abbas & Driesen, Johan, 2021. "Towards data-driven energy communities: A review of open-source datasets, models and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    19. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    20. Shen, Meng & Li, Xiang & Lu, Yujie & Cui, Qingbin & Wei, Yi-Ming, 2021. "Personality-based normative feedback intervention for energy conservation," Energy Economics, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5786-:d:635007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.