IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3021-d1107512.html
   My bibliography  Save this article

Realizing the Improvement of the Reliability and Efficiency of Intelligent Electricity Inspection: IAOA-BP Algorithm for Anomaly Detection

Author

Listed:
  • Yuping Zou

    (State Grid Tianjin Marketing Service Center, Tianjin 300200, China)

  • Rui Wu

    (State Grid Tianjin Marketing Service Center, Tianjin 300200, China)

  • Xuesong Tian

    (State Grid Tianjin Marketing Service Center, Tianjin 300200, China)

  • Hua Li

    (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
    Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China)

Abstract

Anomaly detection can improve the service level of the grid, effectively save human resources and reduce the operating cost of a power company. In this study, an improved arithmetic optimization-backpropagation (IAOA-BP) neural algorithm for an anomaly detection model was proposed for electricity inspection. The dynamic boundary strategy of the cosine control factor and the differential evolution operator are introduced into the arithmetic optimization algorithm (AOA) to obtain the improved arithmetic optimization algorithm (IAOA). The algorithm performance test proves that the IAOA has better solving ability and stability compared with the AOA, WOA, SCA, SOA and SSA. The IAOA was subsequently used to obtain the optimal weights and thresholds for BP. In the experimental phase, the proposed model is validated with electricity data provided by a power company. The results reveal that the overall determination accuracy using the IAOA-BP algorithm remains above 96%, and compared with other algorithms, the IAOA-BP has a higher accuracy and can meet the requirements grid supervision. The power load data anomaly detection model proposed in this study has some implications that might suggest how power companies can promote grid business model transformation, improve economic efficiency, enhance management and improve service quality.

Suggested Citation

  • Yuping Zou & Rui Wu & Xuesong Tian & Hua Li, 2023. "Realizing the Improvement of the Reliability and Efficiency of Intelligent Electricity Inspection: IAOA-BP Algorithm for Anomaly Detection," Energies, MDPI, vol. 16(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3021-:d:1107512
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheong Hee Park & Taegong Kim, 2020. "Energy Theft Detection in Advanced Metering Infrastructure Based on Anomaly Pattern Detection," Energies, MDPI, vol. 13(15), pages 1-10, July.
    2. Simona-Vasilica Oprea & Adela Bâra & Florina Camelia Puican & Ioan Cosmin Radu, 2021. "Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    3. Lei, Lei & Wu, Bing & Fang, Xin & Chen, Li & Wu, Hao & Liu, Wei, 2023. "A dynamic anomaly detection method of building energy consumption based on data mining technology," Energy, Elsevier, vol. 263(PA).
    4. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
    5. Carlo Mari & Cristiano Baldassari, 2021. "Ensemble Methods for Jump-Diffusion Models of Power Prices," Energies, MDPI, vol. 14(8), pages 1-17, April.
    6. Xuesong Tian & Yuping Zou & Xin Wang & Minglang Tseng & Hua Li & Huijuan Zhang, 2022. "Improving the Efficiency and Sustainability of Intelligent Electricity Inspection: IMFO-ELM Algorithm for Load Forecasting," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    7. Haipeng Pan & Zhongqian Yin & Xianzhi Jiang, 2022. "High-Dimensional Energy Consumption Anomaly Detection: A Deep Learning-Based Method for Detecting Anomalies," Energies, MDPI, vol. 15(17), pages 1-14, August.
    8. Wang, Xinlin & Ahn, Sung-Hoon, 2020. "Real-time prediction and anomaly detection of electrical load in a residential community," Applied Energy, Elsevier, vol. 259(C).
    9. Ioannis Panapakidis & Nikolaos Asimopoulos & Athanasios Dagoumas & Georgios C. Christoforidis, 2017. "An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures," Energies, MDPI, vol. 10(9), pages 1-42, September.
    10. Pedro Branco & Francisco Gonçalves & Ana Cristina Costa, 2020. "Tailored Algorithms for Anomaly Detection in Photovoltaic Systems," Energies, MDPI, vol. 13(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    3. Jiil Kim & Cheong Hee Park, 2020. "Partial Discharge Detection Based on Anomaly Pattern Detection," Energies, MDPI, vol. 13(20), pages 1-11, October.
    4. Li, Ding & Zhang, Yufei & Yang, Zheng & Jin, Yaohui & Xu, Yanyan, 2024. "Sensing anomaly of photovoltaic systems with sequential conditional variational autoencoder," Applied Energy, Elsevier, vol. 353(PA).
    5. Thomas Wu & Bo Wang & Dongdong Zhang & Ziwei Zhao & Hongyu Zhu, 2023. "Benchmarking Evaluation of Building Energy Consumption Based on Data Mining," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    6. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Cheng, Xu & Chen, Zhe, 2023. "An energy demand-side management and net metering decision framework," Energy, Elsevier, vol. 271(C).
    7. Palaniappan, Somasundaram & Karuppannan, Sundararaju & Velusamy, Durgadevi, 2024. "Categorization of Indian residential consumers electrical energy consumption pattern using clustering and classification techniques," Energy, Elsevier, vol. 289(C).
    8. Yong Zhu & Mingyi Liu & Lin Wang & Jianxing Wang, 2022. "Potential Failure Prediction of Lithium-ion Battery Energy Storage System by Isolation Density Method," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    9. Bartlomiej Kawa & Piotr Borkowski, 2023. "Integration of Machine Learning Solutions in the Building Automation System," Energies, MDPI, vol. 16(11), pages 1-18, June.
    10. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Yiran Wang & Shuowei Jin & Ming Cheng, 2023. "A Convolution–Non-Convolution Parallel Deep Network for Electricity Theft Detection," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    12. Wang, Xinlin & Flores, Robert & Brouwer, Jack & Papaefthymiou, Marios, 2022. "Real-time detection of electrical load anomalies through hyperdimensional computing," Energy, Elsevier, vol. 261(PA).
    13. Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
    14. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
    15. Mariam Ibrahim & Ahmad Alsheikh & Feras M. Awaysheh & Mohammad Dahman Alshehri, 2022. "Machine Learning Schemes for Anomaly Detection in Solar Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, February.
    16. Benish Kabir & Umar Qasim & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Emad A. Mohammed, 2022. "Detecting Nontechnical Losses in Smart Meters Using a MLP-GRU Deep Model and Augmenting Data via Theft Attacks," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    17. Yang, Wangwang & Shi, Jing & Li, Shujian & Song, Zhaofang & Zhang, Zitong & Chen, Zexu, 2022. "A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior," Applied Energy, Elsevier, vol. 307(C).
    18. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Kong, Jun & Jiang, Wen & Tian, Qing & Jiang, Min & Liu, Tianshan, 2023. "Anomaly detection based on joint spatio-temporal learning for building electricity consumption," Applied Energy, Elsevier, vol. 334(C).
    20. Rui Xia & Yunpeng Gao & Yanqing Zhu & Dexi Gu & Jiangzhao Wang, 2022. "An Efficient Method Combined Data-Driven for Detecting Electricity Theft with Stacking Structure Based on Grey Relation Analysis," Energies, MDPI, vol. 15(19), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3021-:d:1107512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.