IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5343-d869669.html
   My bibliography  Save this article

Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis

Author

Listed:
  • Davide Astolfi

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Ravi Pandit

    (Centre for Life-Cycle Engineering and Management (CLEM), School of Aerospace Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK)

  • Ludovico Terzi

    (ENGIE Italia, Via Chiese, 20126 Milano, Italy)

  • Andrea Lombardi

    (ENGIE Italia, Via Chiese, 20126 Milano, Italy)

Abstract

This work is devoted to the formulation of innovative SCADA-based methods for wind turbine performance analysis and interpretation. The work is organized as an academia–industry collaboration: three test cases are analyzed, two with hydraulic pitch control (Vestas V90 and V100) and one with electric pitch control (Senvion MM92). The investigation is based on the method of bins, on a polynomial regression applied to operation curves that have never been analyzed in detail in the literature before, and on correlation and causality analysis. A key point is the analysis of measurement channels related to the blade pitch control and to the rotor: pitch manifold pressure, pitch piston traveled distance and tower vibrations for the hydraulic pitch wind turbines, and blade pitch current for the electric pitch wind turbines. The main result of this study is that cases of noticeable under-performance are observed for the hydraulic pitch wind turbines, which are associated with pitch pressure decrease in time for one case and to suspected rotor unbalance for another case. On the other way round, the behavior of the rotational speed and blade pitch curves is homogeneous and stable for the wind turbines electrically controlled. Summarizing, the evidence collected in this work identifies the hydraulic pitch as a sensible component of the wind turbine that should be monitored cautiously because it is likely associated with performance decline with age.

Suggested Citation

  • Davide Astolfi & Ravi Pandit & Ludovico Terzi & Andrea Lombardi, 2022. "Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis," Energies, MDPI, vol. 15(15), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5343-:d:869669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Yu & Kumar, Nitesh & Prakash, Abhinav & Kio, Adaiyibo E. & Liu, Xin & Liu, Lei & Li, Qingchang, 2021. "A case study of space-time performance comparison of wind turbines on a wind farm," Renewable Energy, Elsevier, vol. 171(C), pages 735-746.
    2. Charakopoulos, A.K. & Katsouli, G.A. & Karakasidis, T.E., 2018. "Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 436-453.
    3. Sonja Germer & Axel Kleidon, 2019. "Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.
    4. Benini, Giacomo & Cattani, Gilles, 2022. "Measuring the long run technical efficiency of offshore wind farms," Applied Energy, Elsevier, vol. 308(C).
    5. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    6. Davide Astolfi & Ravi Pandit, 2022. "Wind Turbine Performance Decline with Age," Energies, MDPI, vol. 15(14), pages 1-4, July.
    7. John Thomas Lyons & Tuhfe Göçmen, 2021. "Applied Machine Learning Techniques for Performance Analysis in Large Wind Farms," Energies, MDPI, vol. 14(13), pages 1-28, June.
    8. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    9. Hyun-Goo Kim & Jin-Young Kim, 2021. "Analysis of Wind Turbine Aging through Operation Data Calibrated by LiDAR Measurement," Energies, MDPI, vol. 14(8), pages 1-12, April.
    10. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    11. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    12. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
    2. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    3. Davide Astolfi & Ravi Pandit & Andrea Lombardi & Ludovico Terzi, 2022. "Multivariate Data-Driven Models for Wind Turbine Power Curves including Sub-Component Temperatures," Energies, MDPI, vol. 16(1), pages 1-18, December.
    4. Francesco Castellani & Ravi Pandit & Francesco Natili & Francesca Belcastro & Davide Astolfi, 2023. "Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations," Energies, MDPI, vol. 16(3), pages 1-15, January.
    5. Davide Astolfi, 2023. "Wind Turbine Drivetrain Condition Monitoring through SCADA-Collected Temperature Data: Discussion of Selected Recent Papers," Energies, MDPI, vol. 16(9), pages 1-4, April.
    6. Sarah Barber & Unai Izagirre & Oscar Serradilla & Jon Olaizola & Ekhi Zugasti & Jose Ignacio Aizpurua & Ali Eftekhari Milani & Frank Sehnke & Yoshiaki Sakagami & Charles Henderson, 2023. "Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation," Energies, MDPI, vol. 16(8), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Astolfi & Ravi Pandit, 2022. "Wind Turbine Performance Decline with Age," Energies, MDPI, vol. 15(14), pages 1-4, July.
    2. Erik Möllerström & Sean Gregory & Aromal Sugathan, 2021. "Improvement of AEP Predictions with Time for Swedish Wind Farms," Energies, MDPI, vol. 14(12), pages 1-12, June.
    3. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    4. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    5. Hyun-Goo Kim & Jin-Young Kim, 2021. "Analysis of Wind Turbine Aging through Operation Data Calibrated by LiDAR Measurement," Energies, MDPI, vol. 14(8), pages 1-12, April.
    6. Francesco Castellani & Ravi Pandit & Francesco Natili & Francesca Belcastro & Davide Astolfi, 2023. "Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations," Energies, MDPI, vol. 16(3), pages 1-15, January.
    7. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    8. Benjamin Pakenham & Anna Ermakova & Ali Mehmanparast, 2021. "A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments," Energies, MDPI, vol. 14(7), pages 1-23, March.
    9. Davide Astolfi & Francesco Castellani, 2022. "Editorial on the Special Issue “Wind Turbine Monitoring through Operation Data Analysis”," Energies, MDPI, vol. 15(10), pages 1-4, May.
    10. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    12. Ahmed, Faraedoon & Foley, Aoife & Dowds, Carole & Johnston, Barry & Al Kez, Dlzar, 2024. "Assessing the engineering, environmental and economic aspects of repowering onshore wind energy," Energy, Elsevier, vol. 301(C).
    13. Benini, Giacomo & Cattani, Gilles, 2022. "Measuring the long run technical efficiency of offshore wind farms," Applied Energy, Elsevier, vol. 308(C).
    14. Suo Li & Ling-ling Huang & Yang Liu & Meng-yao Zhang, 2021. "Modeling of Ultra-Short Term Offshore Wind Power Prediction Based on Condition-Assessment of Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-16, February.
    15. Javier, Prince Joseph Erneszer A. & Liponhay, Marissa P. & Dajac, Carlo Vincienzo G. & Monterola, Christopher P., 2022. "Causal network inference in a dam system and its implications on feature selection for machine learning forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Emeka Nkoro & Aham Kelvin Uko, 2016. "Exchange Rate and Inflation Volatility and Stock Prices Volatility: Evidence from Nigeria, 1986-2012," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(6), pages 1-4.
    17. Czujack, Corinna & Flôres Junior, Renato Galvão & Ginsburgh, Victor, 1995. "On long-run price comovements between paintings and prints," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 269, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    18. Sotirios Varelas, 2022. "Virtual Immersive Platforms as a Strategic Innovative Destination Marketing Tool in the COVID-19 Era," Sustainability, MDPI, vol. 14(19), pages 1-15, October.
    19. Loperfido, Nicola, 2010. "A note on marginal and conditional independence," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1695-1699, December.
    20. Hyunsoo Kang, 2022. "Impacts of Income Inequality and Economic Growth on CO 2 Emissions: Comparing the Gini Coefficient and the Top Income Share in OECD Countries," Energies, MDPI, vol. 15(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5343-:d:869669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.