IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3567-d1128392.html
   My bibliography  Save this article

Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation

Author

Listed:
  • Sarah Barber

    (Institute of Energy Technology, Eastern Switzerland University of Applied Sciences, 8640 Rapperswil, Switzerland)

  • Unai Izagirre

    (Electronics & Computer Science Department, Mondragon University, 20500 Arrasate-Mondragon, Spain)

  • Oscar Serradilla

    (Electronics & Computer Science Department, Mondragon University, 20500 Arrasate-Mondragon, Spain)

  • Jon Olaizola

    (Electronics & Computer Science Department, Mondragon University, 20500 Arrasate-Mondragon, Spain)

  • Ekhi Zugasti

    (Electronics & Computer Science Department, Mondragon University, 20500 Arrasate-Mondragon, Spain)

  • Jose Ignacio Aizpurua

    (Electronics & Computer Science Department, Mondragon University, 20500 Arrasate-Mondragon, Spain
    Ikerbasque—Basque Foundation for Science, 48009 Bilbao, Spain)

  • Ali Eftekhari Milani

    (TU Delft Wind Energy Institute (DUWIND), Faculty of Aerospace Engineering, TU Delft, 2629 HS Delft, The Netherlands)

  • Frank Sehnke

    (Center for Solar Energy and Hydrogen Research—ZSW, 70563 Stuttgart, Germany)

  • Yoshiaki Sakagami

    (Federal Institute of Santa Catarina, Florianópolis 88020-300, Brazil)

  • Charles Henderson

    (Stacker Group, Charlottesville, VA 22902, USA)

Abstract

In this paper, a set of best practice data sharing guidelines for wind turbine fault detection model evaluation is developed, which can help practitioners overcome the main challenges of digitalisation. Digitalisation is one of the key drivers for reducing costs and risks over the whole wind energy project life cycle. One of the largest challenges in successfully implementing digitalisation is the lack of data sharing and collaboration between organisations in the sector. In order to overcome this challenge, a new collaboration framework called WeDoWind was developed in recent work. The main innovation of this framework is the way it creates tangible incentives to motivate and empower different types of people from all over the world to share data and knowledge in practice. In this present paper, the challenges related to comparing and evaluating different SCADA-data-based wind turbine fault detection models are investigated by carrying out a new case study, the “WinJi Gearbox Fault Detection Challenge”, based on the WeDoWind framework. A total of six new solutions were submitted to the challenge, and a comparison and evaluation of the results show that, in general, some of the approaches (Particle Swarm Optimisation algorithm for constructing health indicators, performance monitoring using Deep Neural Networks, Combined Ward Hierarchical Clustering and Novelty Detection with Local Outlier Factor and Time-to-failure prediction using Random Forest Regression) appear to exhibit high potential to reach the goals of the Challenge. However, there are a number of concrete things that would have to have been done by the Challenge providers and the Challenge moderators in order to ensure success. This includes enabling access to more details of the different failure types, access to multiple data sets from more wind turbines experiencing gearbox failure, provision of a model or rule relating fault detection times or a remaining useful lifetime to the estimated costs for repairs, replacements and inspections, provision of a clear strategy for training and test periods in advance, as well as provision of a pre-defined template or requirements for the results. These learning outcomes are used directly to define a set of best practice data sharing guidelines for wind turbine fault detection model evaluation. The guidelines can be used by researchers in the sector in order to improve model evaluation and data sharing in the future.

Suggested Citation

  • Sarah Barber & Unai Izagirre & Oscar Serradilla & Jon Olaizola & Ekhi Zugasti & Jose Ignacio Aizpurua & Ali Eftekhari Milani & Frank Sehnke & Yoshiaki Sakagami & Charles Henderson, 2023. "Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation," Energies, MDPI, vol. 16(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3567-:d:1128392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Baoping & Song, Tao & Li, Feng & Deng, Lei, 2014. "Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine," Renewable Energy, Elsevier, vol. 62(C), pages 1-9.
    2. Davide Astolfi & Ravi Pandit & Ludovico Terzi & Andrea Lombardi, 2022. "Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis," Energies, MDPI, vol. 15(15), pages 1-17, July.
    3. Li, Xilin & Teng, Wei & Peng, Dikang & Ma, Tao & Wu, Xin & Liu, Yibing, 2023. "Feature fusion model based health indicator construction and self-constraint state-space estimator for remaining useful life prediction of bearings in wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Kusiak, Andrew & Verma, Anoop, 2012. "Analyzing bearing faults in wind turbines: A data-mining approach," Renewable Energy, Elsevier, vol. 48(C), pages 110-116.
    5. Zhang, Chao & Liu, Zepeng & Zhang, Long, 2022. "Wind turbine blade bearing fault detection with Bayesian and Adaptive Kalman Augmented Lagrangian Algorithm," Renewable Energy, Elsevier, vol. 199(C), pages 1016-1023.
    6. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    7. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    8. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    9. Sarah Barber & Luiz Andre Moyses Lima & Yoshiaki Sakagami & Julian Quick & Effi Latiffianti & Yichao Liu & Riccardo Ferrari & Simon Letzgus & Xujie Zhang & Florian Hammer, 2022. "Enabling Co-Innovation for a Successful Digital Transformation in Wind Energy Using a New Digital Ecosystem and a Fault Detection Case Study," Energies, MDPI, vol. 15(15), pages 1-32, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Gück & Cyriana M. A. Roelofs & Stefan Faulstich, 2024. "CARE to Compare: A Real-World Benchmark Dataset for Early Fault Detection in Wind Turbine Data," Data, MDPI, vol. 9(12), pages 1-16, November.
    2. Ulvi Rzazade & Sergey Deryabin & Igor Temkin & Egor Kondratev & Alexander Ivannikov, 2023. "On the Issue of the Creation and Functioning of Energy Efficiency Management Systems for Technological Processes of Mining Enterprises," Energies, MDPI, vol. 16(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah Barber & Luiz Andre Moyses Lima & Yoshiaki Sakagami & Julian Quick & Effi Latiffianti & Yichao Liu & Riccardo Ferrari & Simon Letzgus & Xujie Zhang & Florian Hammer, 2022. "Enabling Co-Innovation for a Successful Digital Transformation in Wind Energy Using a New Digital Ecosystem and a Fault Detection Case Study," Energies, MDPI, vol. 15(15), pages 1-32, August.
    2. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    3. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    4. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    5. Dao, Phong B. & Barszcz, Tomasz & Staszewski, Wieslaw J., 2024. "Anomaly detection of wind turbines based on stationarity analysis of SCADA data," Renewable Energy, Elsevier, vol. 232(C).
    6. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    7. Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
    8. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
    9. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    10. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    11. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    12. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    13. Yancai Xiao & Ruolan Dai & Guangjian Zhang & Weijia Chen, 2017. "The Use of an Improved LSSVM and Joint Normalization on Temperature Prediction of Gearbox Output Shaft in DFWT," Energies, MDPI, vol. 10(11), pages 1-13, November.
    14. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    15. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    16. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    17. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    18. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    19. Tobi Elusakin & Mahmood Shafiee & Tosin Adedipe & Fateme Dinmohammadi, 2021. "A Stochastic Petri Net Model for O&M Planning of Floating Offshore Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-18, February.
    20. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3567-:d:1128392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.