IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v495y2018icp436-453.html
   My bibliography  Save this article

Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis

Author

Listed:
  • Charakopoulos, A.K.
  • Katsouli, G.A.
  • Karakasidis, T.E.

Abstract

Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.

Suggested Citation

  • Charakopoulos, A.K. & Katsouli, G.A. & Karakasidis, T.E., 2018. "Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 436-453.
  • Handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:436-453
    DOI: 10.1016/j.physa.2017.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117312815
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Gooijer, Jan G. & Sivarajasingham, Selliah, 2008. "Parametric and nonparametric Granger causality testing: Linkages between international stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2547-2560.
    2. Gao, Zhong-Ke & Cai, Qing & Yang, Yu-Xuan & Dang, Wei-Dong, 2017. "Time-dependent limited penetrable visibility graph analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 43-48.
    3. Alvarez-Ramirez, Jose & Alvarez, Jesus & Dagdug, Leonardo & Rodriguez, Eduardo & Carlos Echeverria, Juan, 2008. "Long-term memory dynamics of continental and oceanic monthly temperatures in the recent 125 years," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3629-3640.
    4. Zhai, Lu-Sheng & Zong, Yan-Bo & Wang, Hong-Mei & Yan, Cong & Gao, Zhong-Ke & Jin, Ning-De, 2017. "Characterization of flow pattern transitions for horizontal liquid–liquid pipe flows by using multi-scale distribution entropy in coupled 3D phase space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 136-147.
    5. Yang, Yue & Yang, Huijie, 2008. "Complex network-based time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1381-1386.
    6. Akaike, Hirotugu, 1981. "Likelihood of a model and information criteria," Journal of Econometrics, Elsevier, vol. 16(1), pages 3-14, May.
    7. Ashkenazy, Yosef & Stone, Peter H. & Malanotte-Rizzoli, Paola, 2012. "Box modeling of the Eastern Mediterranean sea," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1519-1531.
    8. Shang, Ke-ke & Yan, Wei-sheng & Small, Michael, 2016. "Evolving networks—Using past structure to predict the future," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 120-135.
    9. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    10. Govindan, R.B. & Vjushin, Dmitry & Brenner, Stephen & Bunde, Armin & Havlin, Shlomo & Schellnhuber, Hans-Joachim, 2001. "Long-range correlations and trends in global climate models: Comparison with real data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(1), pages 239-248.
    11. Granger, Clive W. J. & Huangb, Bwo-Nung & Yang, Chin-Wei, 2000. "A bivariate causality between stock prices and exchange rates: evidence from recent Asianflu," The Quarterly Review of Economics and Finance, Elsevier, vol. 40(3), pages 337-354.
    12. Papana, Angeliki & Kyrtsou, Catherine & Kugiumtzis, Dimitris & Diks, Cees, 2017. "Financial networks based on Granger causality: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 65-73.
    13. Yao, Can-Zhong & Lin, Ji-Nan & Lin, Qing-Wen & Zheng, Xu-Zhou & Liu, Xiao-Feng, 2016. "A study of causality structure and dynamics in industrial electricity consumption based on Granger network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 297-320.
    14. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    15. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, I," Energy, Elsevier, vol. 36(1), pages 685-693.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xuan & Shi, Suixiang & Xu, Lingyu & Yu, Jie & Liu, Yaya, 2020. "Analyzing dynamic association of multivariate time series based on method of directed limited penetrable visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Wang, Ze & Gao, Xiangyun & Tang, Renwu & Liu, Xueyong & Sun, Qingru & Chen, Zhihua, 2019. "Identifying influential nodes based on fluctuation conduction network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 355-369.
    3. Javier, Prince Joseph Erneszer A. & Liponhay, Marissa P. & Dajac, Carlo Vincienzo G. & Monterola, Christopher P., 2022. "Causal network inference in a dam system and its implications on feature selection for machine learning forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    4. Charakopoulos, Avraam & Karakasidis, Theodoros & Sarris, loannis, 2019. "Pattern identification for wind power forecasting via complex network and recurrence plot time series analysis," Energy Policy, Elsevier, vol. 133(C).
    5. Davide Astolfi & Ravi Pandit & Ludovico Terzi & Andrea Lombardi, 2022. "Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis," Energies, MDPI, vol. 15(15), pages 1-17, July.
    6. Zhang, Zehui & Wang, Fang & Shen, Luming & Xie, Qiang, 2022. "Multiscale time-lagged correlation networks for detecting air pollution interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahmiri, Salim, 2017. "Cointegration and causal linkages in fertilizer markets across different regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 181-189.
    2. Gómez-Puig, Marta & Sosvilla-Rivero, Simón, 2014. "Causality and contagion in EMU sovereign debt markets," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 12-27.
    3. Ren, Weijie & Li, Baisong & Han, Min, 2020. "A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Wilman-Santiago Ochoa-Moreno & Byron Alejandro Quito & Carlos Andrés Moreno-Hurtado, 2021. "Foreign Direct Investment and Environmental Quality: Revisiting the EKC in Latin American Countries," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    5. Christophe Chorro & Emmanuelle Jay & Philippe De Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Documents de travail du Centre d'Economie de la Sorbonne 21013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Yanhua Chen & Rosario N Mantegna & Athanasios A Pantelous & Konstantin M Zuev, 2018. "A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-40, March.
    7. Tri Nguyen & Quang Bui & Tan Nguyen, 2016. "Causal Correlation between Exchange Rate and Stock Index: Evidence from VN-Index," Asian Social Science, Canadian Center of Science and Education, vol. 12(8), pages 1-43, August.
    8. Shakoor Ahmed & Khorshed Alam & Afzalur Rashid & Jeff Gow, 2020. "Militarisation, Energy Consumption, CO2 Emissions and Economic Growth in Myanmar," Defence and Peace Economics, Taylor & Francis Journals, vol. 31(6), pages 615-641, August.
    9. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    10. Yau, Hwey-Yun & Nieh, Chien-Chung, 2006. "Interrelationships among stock prices of Taiwan and Japan and NTD/Yen exchange rate," Journal of Asian Economics, Elsevier, vol. 17(3), pages 535-552, June.
    11. Henryk Gurgul & Łukasz Lach & Roland Mestel, 2012. "The relationship between budgetary expenditure and economic growth in Poland," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 161-182, March.
    12. Laborde, David & Rey, Serge, 2001. "Transmission internationale de la volatilité des prix d’actifs financiers : les relations entre les marchés français et américains de 1997 à 2000 [Volatility and cross correlation across asset mark," MPRA Paper 30284, University Library of Munich, Germany.
    13. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    14. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    15. Gurgul, Henryk & Lach, Łukasz, 2011. "Causality analysis between public expenditure and economic growth of Polish economy in last decade," MPRA Paper 52281, University Library of Munich, Germany.
    16. Zhang, Shuaishuai & Wu, Libo & Zhou, Yang, 2020. "The impact of negative list policy on sectoral structure: Based on complex network and DID analysis," Applied Energy, Elsevier, vol. 278(C).
    17. Gurgul, Henryk & Lach, Łukasz, 2012. "Technological progress and economic growth: evidence from Poland," MPRA Paper 52279, University Library of Munich, Germany.
    18. Song, Jae Wook & Ko, Bonggyun & Cho, Poongjin & Chang, Woojin, 2016. "Time-varying causal network of the Korean financial system based on firm-specific risk premiums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 287-302.
    19. Muhammed Ashiq Villanthenkodath & Mohd Arshad Ansari & Muhammad Shahbaz & Xuan Vinh Vo, 2022. "Do tourism development and structural change promote environmental quality? Evidence from India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5163-5194, April.
    20. Wang, Xia & Zheng, Tingguo & Zhu, Yanli, 2014. "Money–output Granger causal dynamics in China," Economic Modelling, Elsevier, vol. 43(C), pages 192-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:436-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.