IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0211028.html
   My bibliography  Save this article

Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?

Author

Listed:
  • Sonja Germer
  • Axel Kleidon

Abstract

The planning of the energy transition from fossil fuels to renewables requires estimates for how much electricity wind turbines can generate from the prevailing atmospheric conditions. Here, we estimate monthly ideal wind energy generation from datasets of wind speeds, air density and installed wind turbines in Germany and compare these to reported actual yields. Both yields were used in a statistical model to identify and quantify factors that reduced actual compared to ideal yields. The installed capacity within the region had no significant influence. Turbine age and park size resulted in significant yield reductions. Predicted yields increased from 9.1 TWh/a in 2000 to 58.9 TWh/a in 2014 resulting from an increase in installed capacity from 5.7 GW to 37.6 GW, which agrees very well with reported estimates for Germany. The age effect, which includes turbine aging and possibly other external effects, lowered yields from 3.6 to 6.7% from 2000 to 2014. The effect of park size decreased annual yields by 1.9% throughout this period. However, actual monthly yields represent on average only 73.7% of the ideal yields, with unknown causes. We conclude that the combination of ideal yields predicted from wind conditions with observed yields is suitable to derive realistic estimates of wind energy generation as well as realistic resource potentials.

Suggested Citation

  • Sonja Germer & Axel Kleidon, 2019. "Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.
  • Handle: RePEc:plo:pone00:0211028
    DOI: 10.1371/journal.pone.0211028
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211028
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0211028&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0211028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    2. Pieralli, Simone & Ritter, Matthias & Odening, Martin, 2015. "Efficiency of wind power production and its determinants," Energy, Elsevier, vol. 90(P1), pages 429-438.
    3. Isabelle Tobin & Robert Vautard & Irena Balog & François-Marie Bréon & Sonia Jerez & Paolo Ruti & Françoise Thais & Mathieu Vrac & Pascal Yiou, 2015. "Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections," Climatic Change, Springer, vol. 128(1), pages 99-112, January.
    4. Carrillo, C. & Obando Montaño, A.F. & Cidrás, J. & Díaz-Dorado, E., 2013. "Review of power curve modelling for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 572-581.
    5. Kusiak, Andrew & Song, Zhe, 2010. "Design of wind farm layout for maximum wind energy capture," Renewable Energy, Elsevier, vol. 35(3), pages 685-694.
    6. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    7. Barthelmie, R.J. & Pryor, S.C., 2013. "An overview of data for wake model evaluation in the Virtual Wakes Laboratory," Applied Energy, Elsevier, vol. 104(C), pages 834-844.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Astolfi & Ravi Pandit & Ludovico Terzi & Andrea Lombardi, 2022. "Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    3. Erik Möllerström & Sean Gregory & Aromal Sugathan, 2021. "Improvement of AEP Predictions with Time for Swedish Wind Farms," Energies, MDPI, vol. 14(12), pages 1-12, June.
    4. Ahmed, Faraedoon & Foley, Aoife & Dowds, Carole & Johnston, Barry & Al Kez, Dlzar, 2024. "Assessing the engineering, environmental and economic aspects of repowering onshore wind energy," Energy, Elsevier, vol. 301(C).
    5. Davide Astolfi & Ravi Pandit, 2022. "Wind Turbine Performance Decline with Age," Energies, MDPI, vol. 15(14), pages 1-4, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubert, T. & Zorzi, G. & Fusiek, G. & Niewczas, P. & McMillan, D. & McAlorum, J. & Perry, M., 2019. "Wind turbine lifetime extension decision-making based on structural health monitoring," Renewable Energy, Elsevier, vol. 143(C), pages 611-621.
    2. Rubert, T. & McMillan, D. & Niewczas, P., 2018. "A decision support tool to assist with lifetime extension of wind turbines," Renewable Energy, Elsevier, vol. 120(C), pages 423-433.
    3. repec:hum:wpaper:sfb649dp2016-012 is not listed on IDEAS
    4. Matthias Ritter & Simone Pieralli & Martin Odening, 2017. "Neighborhood Effects in Wind Farm Performance: A Regression Approach," Energies, MDPI, vol. 10(3), pages 1-16, March.
    5. Ritter, Matthias & Pieralli, Simone & Odening, Martin, 2016. "Neighborhood effects in wind farm performance: An econometric approach," SFB 649 Discussion Papers 2016-012, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    7. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    8. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    9. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    10. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
    11. Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
    12. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    13. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    14. Wang, Longyan & Tan, Andy C.C. & Gu, Yuantong & Yuan, Jianping, 2015. "A new constraint handling method for wind farm layout optimization with lands owned by different owners," Renewable Energy, Elsevier, vol. 83(C), pages 151-161.
    15. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    16. Rusu, Eugen & Onea, Florin, 2019. "An assessment of the wind and wave power potential in the island environment," Energy, Elsevier, vol. 175(C), pages 830-846.
    17. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Soares, Pedro M.M. & Lima, Daniela C.A. & Cardoso, Rita M. & Nascimento, Manuel L. & Semedo, Alvaro, 2017. "Western Iberian offshore wind resources: More or less in a global warming climate?," Applied Energy, Elsevier, vol. 203(C), pages 72-90.
    19. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    20. Kuo, Jim Y.J. & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2016. "Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming," Applied Energy, Elsevier, vol. 178(C), pages 404-414.
    21. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0211028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.