IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224015329.html
   My bibliography  Save this article

Assessing the engineering, environmental and economic aspects of repowering onshore wind energy

Author

Listed:
  • Ahmed, Faraedoon
  • Foley, Aoife
  • Dowds, Carole
  • Johnston, Barry
  • Al Kez, Dlzar

Abstract

As onshore wind farms approach the end of their life, critical decisions about their future become imperative. Wind turbine repowering projects encounter multifaceted challenges across economic, engineering, environmental, and social domains. This study critically examines the state of the art in onshore wind repowering on a global scale. The potential of repowering onshore wind to achieve three key objectives is investigated: enhancing energy output, extending operational life, and contributing to net-zero targets. The analyses reveal significant increases in generation capacity through repowering, with benefits extending to local economies and emissions reduction. Additionally, technological advancements such as variable hub heights and wind turbine classes offer optimization opportunities for repowering projects. Challenges such as time-limited consents and financial disincentives prompt an examination of the complexities inherent in these issues and the opportunities they present. The study analyses the complicated interactions of engineering, environmental, and economic factors on a global scale. To overcome these challenges, the study recommends implementing stable financial support mechanisms, streamlining regulations through adaptive energy laws, and enhancing public engagement. Emphasising sustainable practices, the paper calls for clear legislative frameworks focused on wind turbine recyclability and collaborative efforts between the wind industry and communities to ensure environmentally responsible repowering projects.

Suggested Citation

  • Ahmed, Faraedoon & Foley, Aoife & Dowds, Carole & Johnston, Barry & Al Kez, Dlzar, 2024. "Assessing the engineering, environmental and economic aspects of repowering onshore wind energy," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224015329
    DOI: 10.1016/j.energy.2024.131759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Bona, Jéssica Ceolin & Ferreira, Joao Carlos Espindola & Ordoñez Duran, Julian Fernando, 2021. "Analysis of scenarios for repowering wind farms in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Derek Koolen & Derek Bunn & Wolfgang Ketter, 2021. "Renewable Energy Technologies and Electricity Forward Market Risks," The Energy Journal, , vol. 42(4), pages 43-68, July.
    3. Karaca, Ali Erdogan & Dincer, Ibrahim & Nitefor, Michael, 2023. "A new renewable energy system integrated with compressed air energy storage and multistage desalination," Energy, Elsevier, vol. 268(C).
    4. Beauson, J. & Laurent, A. & Rudolph, D.P. & Pagh Jensen, J., 2022. "The complex end-of-life of wind turbine blades: A review of the European context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Reinhard Madlener & Barbara Glensk & Lukas Gläsel, 2019. "Optimal Timing of Onshore Wind Repowering in Germany under Policy Regime Changes: A Real Options Analysis," Energies, MDPI, vol. 12(24), pages 1-33, December.
    6. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    7. Hu, Xing & Guo, Yingying & Zheng, Yali & Liu, Lan-cui & Yu, Shiwei, 2022. "Which types of policies better promote the development of renewable energy? Evidence from China's provincial data," Renewable Energy, Elsevier, vol. 198(C), pages 1373-1382.
    8. Li, Jingrui & Wang, Jiyang & Li, Zhiwu, 2023. "A novel combined forecasting system based on advanced optimization algorithm - A study on optimal interval prediction of wind speed," Energy, Elsevier, vol. 264(C).
    9. Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).
    10. Leite, Gustavo de Novaes Pires & Weschenfelder, Franciele & Farias, João Gabriel de & Kamal Ahmad, Muhammad, 2022. "Economic and sensitivity analysis on wind farm end-of-life strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Gao, Yuyang & Wang, Jianzhou & Yang, Hufang, 2022. "A multi-component hybrid system based on predictability recognition and modified multi-objective optimization for ultra-short-term onshore wind speed forecasting," Renewable Energy, Elsevier, vol. 188(C), pages 384-401.
    12. Serri, Laura & Lembo, Ettore & Airoldi, Davide & Gelli, Camilla & Beccarello, Massimo, 2018. "Wind energy plants repowering potential in Italy: technical-economic assessment," Renewable Energy, Elsevier, vol. 115(C), pages 382-390.
    13. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    14. Unnewehr, Jan Frederick & Jalbout, Eddy & Jung, Christopher & Schindler, Dirk & Weidlich, Anke, 2021. "Getting more with less? Why repowering onshore wind farms does not always lead to more wind power generation – A German case study," Renewable Energy, Elsevier, vol. 180(C), pages 245-257.
    15. Satymov, Rasul & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights," Energy, Elsevier, vol. 256(C).
    16. Alhmoud, Lina & Wang, Bingsen, 2018. "A review of the state-of-the-art in wind-energy reliability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1643-1651.
    17. Sonja Germer & Axel Kleidon, 2019. "Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.
    18. Francisco Haces-Fernandez & Mariee Cruz-Mendoza & Hua Li, 2022. "Onshore Wind Farm Development: Technologies and Layouts," Energies, MDPI, vol. 15(7), pages 1-25, March.
    19. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    20. Stetter, Chris & Wielert, Henrik & Breitner, Michael H., 2022. "Hidden repowering potential of non-repowerable onshore wind sites in Germany," Energy Policy, Elsevier, vol. 168(C).
    21. Clemens Fuchs & Joachim Kasten & Maxi Vent, 2020. "Current State and Future Prospective of Repowering Wind Turbines: An Economic Analysis," Energies, MDPI, vol. 13(12), pages 1-13, June.
    22. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2015. "Repowering: An actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 319-337.
    23. Grashof, Katherina & Berkhout, Volker & Cernusko, Robert & Pfennig, Maximilian, 2020. "Long on promises, short on delivery? Insights from the first two years of onshore wind auctions in Germany," Energy Policy, Elsevier, vol. 140(C).
    24. Derck Koolen, Derek Bunn, and Wolfgang Ketter, 2021. "Renewable Energy Technologies and Electricity Forward Market Risks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    25. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    26. Peri, Erez & Becker, Nir & Tal, Alon, 2020. "What really undermines public acceptance of wind turbines? A choice experiment analysis in Israel," Land Use Policy, Elsevier, vol. 99(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    2. Isabel C. Gil-García & Ana Fernández-Guillamón & M. Socorro García-Cascales & Angel Molina-García, 2021. "A Multi-Factorial Review of Repowering Wind Generation Strategies," Energies, MDPI, vol. 14(19), pages 1-25, October.
    3. Francisco Haces-Fernandez, 2021. "Higher Wind: Highlighted Expansion Opportunities to Repower Wind Energy," Energies, MDPI, vol. 14(22), pages 1-19, November.
    4. Emma L. Delaney & Paul G. Leahy & Jennifer M. McKinley & T. Russell Gentry & Angela J. Nagle & Jeffrey Elberling & Lawrence C. Bank, 2023. "Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    5. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    6. de Bona, Jéssica Ceolin & Ferreira, Joao Carlos Espindola & Ordoñez Duran, Julian Fernando, 2021. "Analysis of scenarios for repowering wind farms in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Leite, Gustavo de Novaes Pires & Weschenfelder, Franciele & Farias, João Gabriel de & Kamal Ahmad, Muhammad, 2022. "Economic and sensitivity analysis on wind farm end-of-life strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. de Simón-Martín, Miguel & Ciria-Garcés, Tomás & Rosales-Asensio, Enrique & González-Martínez, Alberto, 2022. "Multi-dimensional barrier identification for wind farm repowering in Spain through an expert judgment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Doukas, H. & Arsenopoulos, A. & Lazoglou, M. & Nikas, A. & Flamos, A., 2022. "Wind repowering: Unveiling a hidden asset," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
    11. Davide Astolfi & Ravi Pandit, 2022. "Wind Turbine Performance Decline with Age," Energies, MDPI, vol. 15(14), pages 1-4, July.
    12. Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).
    13. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    15. Peri, Erez & Tal, Alon, 2021. "Is setback distance the best criteria for siting wind turbines under crowded conditions? An empirical analysis," Energy Policy, Elsevier, vol. 155(C).
    16. Martínez, E. & Latorre-Biel, J.I. & Jiménez, E. & Sanz, F. & Blanco, J., 2018. "Life cycle assessment of a wind farm repowering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 260-271.
    17. Sheykhha, Siamak & Borggrefe, Frieder & Madlener, Reinhard, 2022. "Policy implications of spatially differentiated renewable energy promotion: A multi-level scenario analysis of onshore wind auctioning in Germany," Energy Policy, Elsevier, vol. 169(C).
    18. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    19. Li, Jianlan & Zhang, Xuran & Zhou, Xing & Lu, Luyi, 2019. "Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model," Renewable Energy, Elsevier, vol. 132(C), pages 1076-1087.
    20. Stetter, Chris & Wielert, Henrik & Breitner, Michael H., 2022. "Hidden repowering potential of non-repowerable onshore wind sites in Germany," Energy Policy, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224015329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.