IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4758-d850991.html
   My bibliography  Save this article

Optimization of Pre-Chamber Geometry and Operating Parameters in a Turbulent Jet Ignition Engine

Author

Listed:
  • Viktor Dilber

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10002 Zagreb, Croatia)

  • Momir Sjerić

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10002 Zagreb, Croatia)

  • Rudolf Tomić

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10002 Zagreb, Croatia)

  • Josip Krajnović

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10002 Zagreb, Croatia)

  • Sara Ugrinić

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10002 Zagreb, Croatia)

  • Darko Kozarac

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10002 Zagreb, Croatia)

Abstract

A turbulent jet ignition engine enables operation with lean mixtures, decreasing nitrogen oxide (NO X ) emissions up to 92%, while the engine efficiency can be increased compared to conventional spark-ignition engines. The geometry of the pre-chamber and engine operating parameters play the most important role in the performance of turbulent jet ignition engines and, therefore, must be optimized. The initial experimental and 3D CFD results of a single-cylinder engine fueled by gasoline were used for the calibration of a 0D/1D simulation model. The 0D/1D simulation model was upgraded to capture the effects of multiple flame propagations, and the evolution of the turbulence level was described by the new K-k-ε turbulence model, which considers the strong turbulent jets occurring in the main chamber. The optimization of the pre-chamber volume, the orifice diameter, the injected fuel mass in the pre-chamber and the spark timing was made over 9 different operating points covering the variation in engine speed and load with the objective of minimizing the fuel consumption while avoiding knock. Two optimization methods using 0D/1D simulations were presented: an individual optimization method for each operating point and a simultaneous optimization method over 9 operating points. It was found that the optimal pre-chamber volume at each operating point was around 5% of the clearance volume, while the favorable orifice diameters depended on engine load, with optimal values around 2.5 mm and 1.2 mm at stoichiometric mixtures and lean mixtures, respectively. Simultaneous optimization of the pre-chamber geometry for all considered operating points resulted in a pre-chamber volume equal to 5.14% of the clearance volume and an orifice diameter of 1.1 mm.

Suggested Citation

  • Viktor Dilber & Momir Sjerić & Rudolf Tomić & Josip Krajnović & Sara Ugrinić & Darko Kozarac, 2022. "Optimization of Pre-Chamber Geometry and Operating Parameters in a Turbulent Jet Ignition Engine," Energies, MDPI, vol. 15(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4758-:d:850991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hua Tian & Jingchen Cui & Tianhao Yang & Yao Fu & Jiangping Tian & Wuqiang Long, 2019. "Experimental Research on Controllability and Emissions of Jet-Controlled Compression Ignition Engine," Energies, MDPI, vol. 12(15), pages 1-14, July.
    2. López, J.J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Rampanarivo, F. & Libert, C. & Dabiri, M., 2021. "Advantages of the unscavenged pre-chamber ignition system in turbocharged natural gas engines for automotive applications," Energy, Elsevier, vol. 218(C).
    3. Jiaying Pan & Yu He & Tao Li & Haiqiao Wei & Lei Wang & Gequn Shu, 2021. "Effect of Temperature Conditions on Flame Evolutions of Turbulent Jet Ignition," Energies, MDPI, vol. 14(8), pages 1-17, April.
    4. Nyamsuren Gombosuren & Ogami Yoshifumi & Asada Hiroyuki, 2020. "A Charge Possibility of an Unfueled Prechamber and Its Fluctuating Phenomenon for the Spark Ignited Engine," Energies, MDPI, vol. 13(2), pages 1-17, January.
    5. Onofrio, Gessica & Napolitano, Pierpaolo & Tunestål, Per & Beatrice, Carlo, 2021. "Combustion sensitivity to the nozzle hole size in an active pre-chamber ultra-lean heavy-duty natural gas engine," Energy, Elsevier, vol. 235(C).
    6. Fabio Bozza & Vincenzo De Bellis & Enrica Malfi & Luigi Teodosio & Daniela Tufano, 2020. "Optimal Calibration Strategy of a Hybrid Electric Vehicle Equipped with an Ultra-Lean Pre-Chamber SI Engine for the Minimization of CO 2 and Pollutant Emissions," Energies, MDPI, vol. 13(15), pages 1-25, August.
    7. Marco Ciampolini & Simone Bigalli & Francesco Balduzzi & Alessandro Bianchini & Luca Romani & Giovanni Ferrara, 2020. "CFD Analysis of the Fuel–Air Mixture Formation Process in Passive Prechambers for Use in a High-Pressure Direct Injection (HPDI) Two-Stroke Engine," Energies, MDPI, vol. 13(11), pages 1-25, June.
    8. Gentz, Gerald & Gholamisheeri, Masumeh & Toulson, Elisa, 2017. "A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization," Applied Energy, Elsevier, vol. 189(C), pages 385-394.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monica Costea & Michel Feidt, 2022. "A Review Regarding Combined Heat and Power Production and Extensions: Thermodynamic Modelling and Environmental Impact," Energies, MDPI, vol. 15(23), pages 1-25, November.
    2. Rudolf Tomić & Momir Sjerić & Josip Krajnović & Sara Ugrinić, 2023. "Influence of Pre-Chamber Volume, Orifice Diameter and Orifice Number on Performance of Pre-Chamber SI Engine—An Experimental and Numerical Study," Energies, MDPI, vol. 16(6), pages 1-19, March.
    3. Ireneusz Pielecha & Filip Szwajca, 2023. "Two- and Three-Stage Natural Gas Combustion System—Experimental Comparative Analysis," Energies, MDPI, vol. 16(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Novella, R. & Gomez-Soriano, J. & Barbery, I. & Martinez-Hernandiz, P.J., 2024. "Exploring the passive the pre-chamber ignition concept for spark-ignition engines fueled with natural gas under EGR-diluted conditions," Energy, Elsevier, vol. 294(C).
    2. Rudolf Tomić & Momir Sjerić & Josip Krajnović & Sara Ugrinić, 2023. "Influence of Pre-Chamber Volume, Orifice Diameter and Orifice Number on Performance of Pre-Chamber SI Engine—An Experimental and Numerical Study," Energies, MDPI, vol. 16(6), pages 1-19, March.
    3. Jiaying Pan & Yu He & Tao Li & Haiqiao Wei & Lei Wang & Gequn Shu, 2021. "Effect of Temperature Conditions on Flame Evolutions of Turbulent Jet Ignition," Energies, MDPI, vol. 14(8), pages 1-17, April.
    4. Soo-Jin Jeong, 2024. "CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review," Energies, MDPI, vol. 17(18), pages 1-39, September.
    5. Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
    6. Zheng, Lukai & Cronly, James & Ubogu, Emamode & Ahmed, Ihab & Zhang, Yang & Khandelwal, Bhupendra, 2019. "Experimental investigation on alternative fuel combustion performance using a gas turbine combustor," Applied Energy, Elsevier, vol. 238(C), pages 1530-1542.
    7. Yang, Jingxun & Xie, Fangxi & Jiang, Beiping & Li, Xiaoping & Su, Yan & Zhang, Hao, 2024. "Influence of structure parameters of pre-chamber on lean combustion of active pre-chamber jet ignition engine," Energy, Elsevier, vol. 304(C).
    8. Santiago Molina & Ricardo Novella & Josep Gomez-Soriano & Miguel Olcina-Girona, 2021. "New Combustion Modelling Approach for Methane-Hydrogen Fueled Engines Using Machine Learning and Engine Virtualization," Energies, MDPI, vol. 14(20), pages 1-21, October.
    9. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.
    10. Nyamsuren Gombosuren & Ogami Yoshifumi & Asada Hiroyuki, 2020. "A Charge Possibility of an Unfueled Prechamber and Its Fluctuating Phenomenon for the Spark Ignited Engine," Energies, MDPI, vol. 13(2), pages 1-17, January.
    11. Wang, Bin & Xie, Fangxi & Hong, Wei & Du, Jiakun & Chen, Hong & Li, Xiaoping, 2023. "Extending ultra-lean burn performance of high compression ratio pre-chamber jet ignition engines based on injection strategy and optimized structure," Energy, Elsevier, vol. 282(C).
    12. Lina Xu & Gang Li & Mingfa Yao & Zunqing Zheng & Hu Wang, 2022. "Numerical Investigation on the Jet Characteristics and Combustion Process of an Active Prechamber Combustion System Fueled with Natural Gas," Energies, MDPI, vol. 15(15), pages 1-16, July.
    13. García-Mariaca, Alexander & Llera-Sastresa, Eva & Moreno, Francisco, 2024. "CO2 capture feasibility by Temperature Swing Adsorption in heavy-duty engines from an energy perspective," Energy, Elsevier, vol. 292(C).
    14. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    15. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    16. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    17. Hu, Junnan & Pei, Yiqiang & An, Yanzhao & Zhao, Deyang & Zhang, Zhiyong & Sun, Jian & Gao, Dingwei, 2023. "Study of active pre-chamber jet flames based on the synergy of airflow with different nozzle swirl angle," Energy, Elsevier, vol. 282(C).
    18. Jung, Dongwon & Sasaki, Kosaku & Iida, Norimasa, 2017. "Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation," Applied Energy, Elsevier, vol. 205(C), pages 1467-1477.
    19. Marco Ciampolini & Simone Bigalli & Francesco Balduzzi & Alessandro Bianchini & Luca Romani & Giovanni Ferrara, 2020. "CFD Analysis of the Fuel–Air Mixture Formation Process in Passive Prechambers for Use in a High-Pressure Direct Injection (HPDI) Two-Stroke Engine," Energies, MDPI, vol. 13(11), pages 1-25, June.
    20. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4758-:d:850991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.