Operation strategy optimization of lean combustion using turbulent jet ignition at different engine loads
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.117586
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhou, Lei & Hua, Jianxiong & Liu, Feng & Liu, Fengnian & Feng, Dengquan & Wei, Haiqiao, 2018. "Effect of internal exhaust gas recirculation on the combustion characteristics of gasoline compression ignition engine under low to idle conditions," Energy, Elsevier, vol. 164(C), pages 306-315.
- Jung, Dongwon & Sasaki, Kosaku & Iida, Norimasa, 2017. "Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation," Applied Energy, Elsevier, vol. 205(C), pages 1467-1477.
- Jung, Dongwon & Iida, Norimasa, 2018. "An investigation of multiple spark discharge using multi-coil ignition system for improving thermal efficiency of lean SI engine operation," Applied Energy, Elsevier, vol. 212(C), pages 322-332.
- Gentz, Gerald & Gholamisheeri, Masumeh & Toulson, Elisa, 2017. "A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization," Applied Energy, Elsevier, vol. 189(C), pages 385-394.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Bin & Xie, Fangxi & Hong, Wei & Du, Jiakun & Chen, Hong & Li, Xiaoping, 2023. "Extending ultra-lean burn performance of high compression ratio pre-chamber jet ignition engines based on injection strategy and optimized structure," Energy, Elsevier, vol. 282(C).
- Zeng, Yonghao & Fan, Baowei & Pan, Jianfeng & He, Ren & Fang, Jia & Salami, Hammed Adeniyi & Wu, Xin, 2022. "Research on the ignition strategy of a methanol/gasoline blends rotary engine using turbulent jet ignition mode," Energy, Elsevier, vol. 261(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
- Discepoli, G. & Cruccolini, V. & Ricci, F. & Di Giuseppe, A. & Papi, S. & Grimaldi, C.N., 2020. "Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air," Applied Energy, Elsevier, vol. 263(C).
- Huang, Shuai & Li, Tie & Zhang, Zhifei & Ma, Pengfei, 2019. "Rotational and vibrational temperatures in the spark plasma by various discharge energies and strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Wright, Y.M. & Vuorinen, V., 2018. "Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration," Applied Energy, Elsevier, vol. 230(C), pages 486-505.
- Federico Ricci & Francesco Mariani & Stefano Papi & Jacopo Zembi & Michele Battistoni & Carlo Nazareno Grimaldi, 2024. "The Synergy between Methanol M100 and Plasma-Assisted Ignition System PAI to Achieve Increasingly Leaner Mixtures in a Single-Cylinder Engine," Energies, MDPI, vol. 17(7), pages 1-14, March.
- Tsuboi, Seima & Miyokawa, Shinji & Matsuda, Masayoshi & Yokomori, Takeshi & Iida, Norimasa, 2019. "Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine," Applied Energy, Elsevier, vol. 250(C), pages 617-632.
- Xu, Zidan & Zhang, Yahui & Di, Huanyu & Shen, Tielong, 2019. "Combustion variation control strategy with thermal efficiency optimization for lean combustion in spark-ignition engines," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
- Cinzia Tornatore & Magnus Sjöberg, 2021. "Optical Investigation of a Partial Fuel Stratification Strategy to Stabilize Overall Lean Operation of a DISI Engine Fueled with Gasoline and E30," Energies, MDPI, vol. 14(2), pages 1-32, January.
- Zhang, Zhiyuan & Feng, Huihua & He, Hongwen & Jia, Boru & Zuo, Zhengxing & Liu, Chang & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Demonstration of a single/dual cylinder free-piston engine generator prototype: Milestone achieved on system stability," Energy, Elsevier, vol. 278(PA).
- Viktor Dilber & Momir Sjerić & Rudolf Tomić & Josip Krajnović & Sara Ugrinić & Darko Kozarac, 2022. "Optimization of Pre-Chamber Geometry and Operating Parameters in a Turbulent Jet Ignition Engine," Energies, MDPI, vol. 15(13), pages 1-21, June.
- Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
- Nyamsuren Gombosuren & Ogami Yoshifumi & Asada Hiroyuki, 2020. "A Charge Possibility of an Unfueled Prechamber and Its Fluctuating Phenomenon for the Spark Ignited Engine," Energies, MDPI, vol. 13(2), pages 1-17, January.
- Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
- Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
- Jung, Dongwon & Sasaki, Kosaku & Iida, Norimasa, 2017. "Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation," Applied Energy, Elsevier, vol. 205(C), pages 1467-1477.
- Jung, Dongwon & Iida, Norimasa, 2018. "An investigation of multiple spark discharge using multi-coil ignition system for improving thermal efficiency of lean SI engine operation," Applied Energy, Elsevier, vol. 212(C), pages 322-332.
- Nguyen Xuan Khoa & Ocktaeck Lim, 2020. "Comparative Study of the Effective Release Energy, Residual Gas Fraction, and Emission Characteristics with Various Valve Port Diameter-Bore Ratios (VPD/B) of a Four-Stroke Spark Ignition Engine," Energies, MDPI, vol. 13(6), pages 1-18, March.
- Marco Ciampolini & Simone Bigalli & Francesco Balduzzi & Alessandro Bianchini & Luca Romani & Giovanni Ferrara, 2020. "CFD Analysis of the Fuel–Air Mixture Formation Process in Passive Prechambers for Use in a High-Pressure Direct Injection (HPDI) Two-Stroke Engine," Energies, MDPI, vol. 13(11), pages 1-25, June.
- Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "A Study to Investigate the Effect of Valve Mechanisms on Exhaust Residual Gas and Effective Release Energy of a Motorcycle Engine," Energies, MDPI, vol. 14(17), pages 1-14, September.
More about this item
Keywords
Turbulent jet ignition; Lean combustion; Intake boost; Intake strategy; Thermal efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:302:y:2021:i:c:s0306261921009624. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.