IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3509-d813065.html
   My bibliography  Save this article

RLS-Based Algorithm for Detecting Partial Demagnetization under Both Stationary and Nonstationary Conditions

Author

Listed:
  • Ze Jiang

    (Zhejiang Provincial Key Laboratory of Electrical Machine Systems, College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
    Wolong Electric Group Co., Ltd., Shaoxing 312300, China)

  • Xiaoyan Huang

    (Zhejiang Provincial Key Laboratory of Electrical Machine Systems, College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Wenping Cao

    (School of Electrical Engineering and Automation, Anhui Unsiversity, Hefei 230039, China)

Abstract

An algorithm was developed detect the partial demagnetization of permanent-magnet synchronous motors (PMSMs) under both stationary and nonstationary conditions. On the basis of the recursive least-squares (RLS) method, the vital component of fault-related harmonics in the current could be extracted on the line, and its proportion to fundamental component could be regarded as the indicator of partial demagnetization faults. The proposed algorithm is fairly easy to realize and could substitute conventional and complicated signal processing methods such as Fourier transform and wavelet transform when detecting partial demagnetization. Experiments with inverter-fed healthy and partially demagnetized PMSMs are carried out to substantiate the effectiveness of proposed algorithm under both stationary and nonstationary conditions. At the end, a way to eliminate the impact of eccentricity fault on the partial demagnetization diagnosis is given.

Suggested Citation

  • Ze Jiang & Xiaoyan Huang & Wenping Cao, 2022. "RLS-Based Algorithm for Detecting Partial Demagnetization under Both Stationary and Nonstationary Conditions," Energies, MDPI, vol. 15(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3509-:d:813065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierpaolo Dini & Sergio Saponara, 2019. "Cogging Torque Reduction in Brushless Motors by a Nonlinear Control Technique," Energies, MDPI, vol. 12(11), pages 1-20, June.
    2. Cinzia Bernardeschi & Pierpaolo Dini & Andrea Domenici & Maurizio Palmieri & Sergio Saponara, 2020. "Formal Verification and Co-Simulation in the Design of a Synchronous Motor Control Algorithm," Energies, MDPI, vol. 13(16), pages 1-23, August.
    3. Pierpaolo Dini & Sergio Saponara, 2020. "Design of Adaptive Controller Exploiting Learning Concepts Applied to a BLDC-Based Drive System," Energies, MDPI, vol. 13(10), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierpaolo Dini & Sergio Saponara, 2022. "Review on Model Based Design of Advanced Control Algorithms for Cogging Torque Reduction in Power Drive Systems," Energies, MDPI, vol. 15(23), pages 1-29, November.
    2. Lucian Mihet-Popa & Sergio Saponara, 2021. "Power Converters, Electric Drives and Energy Storage Systems for Electrified Transportation and Smart Grid Applications," Energies, MDPI, vol. 14(14), pages 1-5, July.
    3. Wenyi Li & Yalin Wang & Yi Ding & Yi Yin, 2022. "Optimization Design of Packaging Insulation for Half-Bridge SiC MOSFET Power Module Based on Multi-Physics Simulation," Energies, MDPI, vol. 15(13), pages 1-19, July.
    4. Marcel Nicola & Claudiu-Ionel Nicola, 2022. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning," Mathematics, MDPI, vol. 10(24), pages 1-34, December.
    5. Pierpaolo Dini & Sergio Saponara, 2020. "Design of an Observer-Based Architecture and Non-Linear Control Algorithm for Cogging Torque Reduction in Synchronous Motors," Energies, MDPI, vol. 13(8), pages 1-20, April.
    6. Cinzia Bernardeschi & Pierpaolo Dini & Andrea Domenici & Maurizio Palmieri & Sergio Saponara, 2020. "Formal Verification and Co-Simulation in the Design of a Synchronous Motor Control Algorithm," Energies, MDPI, vol. 13(16), pages 1-23, August.
    7. Pierpaolo Dini & Sergio Saponara, 2020. "Design of Adaptive Controller Exploiting Learning Concepts Applied to a BLDC-Based Drive System," Energies, MDPI, vol. 13(10), pages 1-20, May.
    8. Adriano Nardoto & Arthur Amorim & Nelson Santana & Emilio Bueno & Lucas Encarnação & Walbermark Santos, 2022. "Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction," Energies, MDPI, vol. 15(18), pages 1-24, September.
    9. Chaelim Jeong & Dongho Lee & Jin Hur, 2019. "Mitigation Method of Slot Harmonic Cogging Torque Considering Unevenly Magnetized Permanent Magnets in PMSM," Energies, MDPI, vol. 12(20), pages 1-15, October.
    10. Juan Carlos Travieso-Torres & Manuel A. Duarte-Mermoud & Matías Díaz & Camilo Contreras-Jara & Francisco Hernández, 2022. "Closed-Loop Adaptive High-Starting Torque Scalar Control Scheme for Induction Motor Variable Speed Drives," Energies, MDPI, vol. 15(10), pages 1-15, May.
    11. Kamila Jankowska & Mateusz Dybkowski, 2021. "A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on C ri Markers," Energies, MDPI, vol. 14(12), pages 1-18, June.
    12. Massimo Caruso & Antonino Oscar Di Tommaso & Rosario Miceli & Fabio Viola, 2022. "A Cogging Torque Minimization Procedure for Interior Permanent Magnet Synchronous Motors Based on a Progressive Modification of the Rotor Lamination Geometry," Energies, MDPI, vol. 15(14), pages 1-19, July.
    13. Changchuang Huang & Baoquan Kou & Xiaokun Zhao & Xu Niu & Lu Zhang, 2022. "Multi-Objective Optimization Design of a Stator Coreless Multidisc Axial Flux Permanent Magnet Motor," Energies, MDPI, vol. 15(13), pages 1-13, June.
    14. Chao Wang & Li Wan & Tifan Xiong & Yuanlong Xie & Shuting Wang & Jianwan Ding & Liping Chen, 2021. "Hierarchical Structural Analysis Method for Complex Equation-Oriented Models," Mathematics, MDPI, vol. 9(21), pages 1-26, October.
    15. Adeel Bashir & Sikandar Khan & Naveed Iqbal & Salem Bashmal & Sami Ullah & Fayyaz & Muhammad Usman, 2023. "A Review of the Various Control Algorithms for Trajectory Control of Unmanned Underwater Vehicles," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    16. Zhiyan Zhang & Ming Zhang & Jing Yin & Jie Wu & Cunxiang Yang, 2022. "An Analytical Method for Calculating the Cogging Torque of a Consequent Pole Hybrid Excitation Synchronous Machine Based on Spatial 3D Field Simplification," Energies, MDPI, vol. 15(3), pages 1-13, January.
    17. Michal Vidlak & Lukas Gorel & Pavol Makys & Michal Stano, 2021. "Sensorless Speed Control of Brushed DC Motor Based at New Current Ripple Component Signal Processing," Energies, MDPI, vol. 14(17), pages 1-25, August.
    18. Rafael de Farias Campos & Cesar da Silva Liberato & José de Oliveira & Tiago Jackson May Dezuo & Ademir Nied, 2022. "Dynamic Strategy for Effective Current Reduction in Brushless DC Synchronous Motors Fault Tolerant Operation," Energies, MDPI, vol. 15(24), pages 1-17, December.
    19. T. A. Anuja & M. Arun Noyal Doss, 2021. "Reduction of Cogging Torque in Surface Mounted Permanent Magnet Brushless DC Motor by Adapting Rotor Magnetic Displacement," Energies, MDPI, vol. 14(10), pages 1-20, May.
    20. Feifan Ji & Qingyu Song & Yanjun Li & Ran Cao, 2023. "An Accurate Torque Control Strategy for Permanent Magnet Synchronous Motors Based on a Multi-Closed-Loop Regulation Design," Energies, MDPI, vol. 17(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3509-:d:813065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.