IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2780-d881166.html
   My bibliography  Save this article

A Hybrid Approach Based on Principal Component Analysis for Power Quality Event Classification Using Support Vector Machines

Author

Listed:
  • Akash Saxena

    (Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur 302017, India)

  • Ahmad M. Alshamrani

    (Statistics and Operations Research Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • Adel Fahad Alrasheedi

    (Statistics and Operations Research Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • Khalid Abdulaziz Alnowibet

    (Statistics and Operations Research Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • Ali Wagdy Mohamed

    (Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt)

Abstract

Power quality has emerged as a sincere denominator in the planning and operation of a power system. Various events affect the quality of power at the distribution end of the system. Detection of these events has been a major thrust area in the last decade. This paper presents the application of Support Vector Machine (SVM) in classifying the power quality events. Well-known signal processing techniques, namely Hilbert transform and Wavelet transform, are employed to extract the potential features from the observation sets of voltages. Supervised architecture consisting of SVM has been constructed by tuning the parameters of SVM by various algorithms. It has been observed that Augmented Crow Search Algorithm (ACSA) yields the best accuracy compared to other contemporary optimizers. Further, Principal Component Analysis (PCA) is employed to choose the most significant features from the available features. On the basis of PCA, three different models of tuned SVMs are constructed. Comparative analysis of these three models, along with recently published approaches, is exhibited. Results are validated by the statistical one-way analysis of variance (ANOVA) method. It is observed that SVM, which contains attributes from both signal-processing techniques, gives satisfactory results.

Suggested Citation

  • Akash Saxena & Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Ali Wagdy Mohamed, 2022. "A Hybrid Approach Based on Principal Component Analysis for Power Quality Event Classification Using Support Vector Machines," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2780-:d:881166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenlong Fu & Jiawen Tan & Xiaoyuan Zhang & Tie Chen & Kai Wang, 2019. "Blind Parameter Identification of MAR Model and Mutation Hybrid GWO-SCA Optimized SVM for Fault Diagnosis of Rotating Machinery," Complexity, Hindawi, vol. 2019, pages 1-17, April.
    2. Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Akash Saxena & Karam M. Sallam & Ali Wagdy Mohamed, 2022. "Chaos Embed Marine Predator (CMPA) Algorithm for Feature Selection," Mathematics, MDPI, vol. 10(9), pages 1-18, April.
    3. Sakthivel Ganesan & Prince Winston David & Praveen Kumar Balachandran & Devakirubakaran Samithas, 2021. "Intelligent Starting Current-Based Fault Identification of an Induction Motor Operating under Various Power Quality Issues," Energies, MDPI, vol. 14(2), pages 1-13, January.
    4. Khalid Abdulaziz Alnowibet & Shalini Shekhawat & Akash Saxena & Karam M. Sallam & Ali Wagdy Mohamed, 2022. "Development and Applications of Augmented Whale Optimization Algorithm," Mathematics, MDPI, vol. 10(12), pages 1-33, June.
    5. Pavan Babu Bandla & Indragandhi Vairavasundaram & Yuvaraja Teekaraman & Ramya Kuppusamy & Srete Nikolovski, 2021. "Real Time Sustainable Power Quality Analysis of Non-Linear Load under Symmetrical Conditions," Energies, MDPI, vol. 15(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoyab Ali & Annapurna Bhargava & Akash Saxena & Pavan Kumar, 2023. "A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selection of Hybrid Active Power Filter," Mathematics, MDPI, vol. 11(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoyab Ali & Annapurna Bhargava & Akash Saxena & Pavan Kumar, 2023. "A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selection of Hybrid Active Power Filter," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    2. Ahmed A. Ewees & Fatma H. Ismail & Rania M. Ghoniem & Marwa A. Gaheen, 2022. "Enhanced Marine Predators Algorithm for Solving Global Optimization and Feature Selection Problems," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    3. Damian Grzechca & Paweł Rybka & Roman Pawełczyk, 2021. "Level Crossing Barrier Machine Faults and Anomaly Detection with the Use of Motor Current Waveform Analysis," Energies, MDPI, vol. 14(11), pages 1-14, May.
    4. Ángel Adrián Orta-Quintana & Rogelio Ernesto García-Chávez & Ramón Silva-Ortigoza & Magdalena Marciano-Melchor & Miguel Gabriel Villarreal-Cervantes & José Rafael García-Sánchez & Rocío García-Cortés , 2023. "Sensorless Tracking Control Based on Sliding Mode for the “Full-Bridge Buck Inverter–DC Motor” System Fed by PV Panel," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    5. Chung-Seong Lee & Hae-Joong Kim, 2022. "Harmonic Order Analysis of Cogging Torque for Interior Permanent Magnet Synchronous Motor Considering Manufacturing Disturbances," Energies, MDPI, vol. 15(7), pages 1-13, March.
    6. Mlungisi Ntombela & Kabeya Musasa, 2023. "Load Profile and Load Flow Analysis for a Grid System with Electric Vehicles Using a Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    7. Savin Treanţă, 2022. "Variational Problems and Applications," Mathematics, MDPI, vol. 11(1), pages 1-4, December.
    8. Juan Carlos Travieso-Torres & Manuel A. Duarte-Mermoud & Matías Díaz & Camilo Contreras-Jara & Francisco Hernández, 2022. "Closed-Loop Adaptive High-Starting Torque Scalar Control Scheme for Induction Motor Variable Speed Drives," Energies, MDPI, vol. 15(10), pages 1-15, May.
    9. Jiawei Ye & Wei Zeng & Zhigao Zhao & Jiebin Yang & Jiandong Yang, 2020. "Optimization of Pump Turbine Closing Operation to Minimize Water Hammer and Pulsating Pressures During Load Rejection," Energies, MDPI, vol. 13(4), pages 1-18, February.
    10. He, Zhongzheng & Zhou, Jianzhong & Qin, Hui & Jia, Benjun & He, Feifei & Liu, Guangbiao & Feng, Kuaile, 2020. "A fast water level optimal control method based on two stage analysis for long term power generation scheduling of hydropower station," Energy, Elsevier, vol. 210(C).
    11. Jian Dong, 2023. "Preface to the Special Issue on “Recent Advances in Swarm Intelligence Algorithms and Their Applications”—Special Issue Book," Mathematics, MDPI, vol. 11(12), pages 1-4, June.
    12. Wei Jiang & Jianzhong Zhou & Yanhe Xu & Jie Liu & Yahui Shan, 2019. "Multistep Degradation Tendency Prediction for Aircraft Engines Based on CEEMDAN Permutation Entropy and Improved Grey–Markov Model," Complexity, Hindawi, vol. 2019, pages 1-18, October.
    13. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2780-:d:881166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.