IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v72y2014icp510-520.html
   My bibliography  Save this article

Mean-variance model for power system economic dispatch with wind power integrated

Author

Listed:
  • Li, Y.Z.
  • Wu, Q.H.
  • Li, M.S.
  • Zhan, J.P.

Abstract

This paper presents the mean-variance (MV) model to solve the power system economic dispatch with wind power integrated, based on the optimal power flow problem. The MV model considers the profit and risk simultaneously under the environment of uncertain wind power, which is formulated as a multi-objective optimization problem. The MGSOMP (multiple-group search optimizer with multiple producers) is proposed to solve the MV model to find Pareto solutions, based on GSOMP (group search optimizer with multiple producers). Then the preference ranking organization method is used for decision making to determine the final dispatch solution. The MV model and MGSOMP are tested on the modified IEEE 30-bus and 118-bus power systems, respectively. Simulation results show that the MV model is well applicable to solve power system dispatch considering wind power integrated, and MGSOMP can obtain more convergent and better diversified Pareto solutions, compared with GSOMP.

Suggested Citation

  • Li, Y.Z. & Wu, Q.H. & Li, M.S. & Zhan, J.P., 2014. "Mean-variance model for power system economic dispatch with wind power integrated," Energy, Elsevier, vol. 72(C), pages 510-520.
  • Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:510-520
    DOI: 10.1016/j.energy.2014.05.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Liao & Q. Wu, 2013. "Multi-objective optimization by learning automata," Journal of Global Optimization, Springer, vol. 55(2), pages 459-487, February.
    2. Niu, Qun & Zhang, Hongyun & Li, Kang & Irwin, George W., 2014. "An efficient harmony search with new pitch adjustment for dynamic economic dispatch," Energy, Elsevier, vol. 65(C), pages 25-43.
    3. Hong, Ying-Yi & Chang, Huei-Lin & Chiu, Ching-Sheng, 2010. "Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs," Energy, Elsevier, vol. 35(9), pages 3870-3876.
    4. Hong, Ying-Yi & Lin, Jie-Kai, 2013. "Interactive multi-objective active power scheduling considering uncertain renewable energies using adaptive chaos clonal evolutionary programming," Energy, Elsevier, vol. 53(C), pages 212-220.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Panigrahi, B.K. & Ravikumar Pandi, V. & Das, Sanjoy & Das, Swagatam, 2010. "Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem," Energy, Elsevier, vol. 35(12), pages 4761-4770.
    7. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    8. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    9. Zhao, M. & Chen, Z. & Blaabjerg, F., 2006. "Probabilistic capacity of a grid connected wind farm based on optimization method," Renewable Energy, Elsevier, vol. 31(13), pages 2171-2187.
    10. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.
    11. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    12. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    13. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    14. De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods," Energy, Elsevier, vol. 36(7), pages 3968-3978.
    15. de Athayde Costa e Silva, Marsil & Klein, Carlos Eduardo & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2013. "Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem," Energy, Elsevier, vol. 53(C), pages 14-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jian-Xin & Zhu, Kaiwei & Tan, Xianchun & Gu, Baihe, 2021. "Low-carbon technology development under multiple adoption risks," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    2. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    3. Jiao, P.H. & Chen, J.J. & Peng, K. & Zhao, Y.L. & Xin, K.F., 2020. "Multi-objective mean-semi-entropy model for optimal standalone micro-grid planning with uncertain renewable energy resources," Energy, Elsevier, vol. 191(C).
    4. Xiaowei Ma & Zhiren Zhang & Hewen Bai & Jing Ren & Song Cheng & Xiaoning Kang, 2022. "A Mid/Long-Term Optimization Model of Power System Considering Cross-Regional Power Trade and Renewable Energy Absorption Interval," Energies, MDPI, vol. 15(10), pages 1-15, May.
    5. Ghasemi, Mojtaba & Aghaei, Jamshid & Akbari, Ebrahim & Ghavidel, Sahand & Li, Li, 2016. "A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems," Energy, Elsevier, vol. 107(C), pages 182-195.
    6. Jadidoleslam, Morteza & Ebrahimi, Akbar & Latify, Mohammad Amin, 2017. "Probabilistic transmission expansion planning to maximize the integration of wind power," Renewable Energy, Elsevier, vol. 114(PB), pages 866-878.
    7. Chen, J.J. & Zhuang, Y.B. & Li, Y.Z. & Wang, P. & Zhao, Y.L. & Zhang, C.S., 2017. "Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model," Applied Energy, Elsevier, vol. 189(C), pages 534-554.
    8. Yongqi Zhao & Jiajia Chen, 2021. "A Quantitative Risk-Averse Model for Optimal Management of Multi-Source Standalone Microgrid with Demand Response and Pumped Hydro Storage," Energies, MDPI, vol. 14(9), pages 1-17, May.
    9. Li, Y.Z. & Li, K.C. & Wang, P. & Liu, Y. & Lin, X.N. & Gooi, H.B. & Li, G.F. & Cai, D.L. & Luo, Y., 2017. "Risk constrained economic dispatch with integration of wind power by multi-objective optimization approach," Energy, Elsevier, vol. 126(C), pages 810-820.
    10. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    11. Jiao, P.H. & Chen, J.J. & Cai, X. & Zhao, Y.L., 2024. "Fuzzy semi-entropy based downside risk to low-carbon oriented multi-energy dispatch considering multiple dependent uncertainties," Energy, Elsevier, vol. 287(C).
    12. Lin, Zhenjia & Chen, Haoyong & Wu, Qiuwei & Li, Weiwei & Li, Mengshi & Ji, Tianyao, 2020. "Mean-tracking model based stochastic economic dispatch for power systems with high penetration of wind power," Energy, Elsevier, vol. 193(C).
    13. Li, M.S. & Lin, Z.J. & Ji, T.Y. & Wu, Q.H., 2018. "Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula," Applied Energy, Elsevier, vol. 226(C), pages 967-978.
    14. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    15. Fitiwi, Desta Z. & de Cuadra, F. & Olmos, L. & Rivier, M., 2015. "A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty," Energy, Elsevier, vol. 90(P2), pages 1360-1376.
    16. Hongze Li & Xuejie Wang & Fengyun Li & Yuwei Wang & Xinhua Yu, 2018. "A Robust Day-Ahead Electricity Market Clearing Model Considering Wind Power Penetration," Energies, MDPI, vol. 11(7), pages 1-18, July.
    17. Li Xia, 2020. "Risk‐Sensitive Markov Decision Processes with Combined Metrics of Mean and Variance," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2808-2827, December.
    18. Wei, F. & Wu, Q.H. & Jing, Z.X. & Chen, J.J. & Zhou, X.X., 2016. "Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach," Energy, Elsevier, vol. 111(C), pages 933-946.
    19. Chen, J.J. & Wu, Q.H. & Zhang, L.L. & Wu, P.Z., 2017. "Multi-objective mean–variance–skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties," European Journal of Operational Research, Elsevier, vol. 263(2), pages 719-732.
    20. Rahmani, Shima & Amjady, Nima, 2017. "A new optimal power flow approach for wind energy integrated power systems," Energy, Elsevier, vol. 134(C), pages 349-359.
    21. Sousa, Tiago & Morais, Hugo & Vale, Zita & Castro, Rui, 2015. "A multi-objective optimization of the active and reactive resource scheduling at a distribution level in a smart grid context," Energy, Elsevier, vol. 85(C), pages 236-250.
    22. Hur, J. & Baldick, R., 2016. "A new merit function to accommodate high wind power penetration of WGRs (wind generating resources)," Energy, Elsevier, vol. 108(C), pages 34-40.
    23. Zaman, Forhad & Elsayed, Saber M. & Ray, Tapabrata & Sarker, Ruhul A., 2016. "Evolutionary algorithms for power generation planning with uncertain renewable energy," Energy, Elsevier, vol. 112(C), pages 408-419.
    24. Ma, Shuai & Ma, Xiaoteng & Xia, Li, 2023. "A unified algorithm framework for mean-variance optimization in discounted Markov decision processes," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1057-1067.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    2. Jiao, P.H. & Chen, J.J. & Peng, K. & Zhao, Y.L. & Xin, K.F., 2020. "Multi-objective mean-semi-entropy model for optimal standalone micro-grid planning with uncertain renewable energy resources," Energy, Elsevier, vol. 191(C).
    3. Li, Y.Z. & Li, K.C. & Wang, P. & Liu, Y. & Lin, X.N. & Gooi, H.B. & Li, G.F. & Cai, D.L. & Luo, Y., 2017. "Risk constrained economic dispatch with integration of wind power by multi-objective optimization approach," Energy, Elsevier, vol. 126(C), pages 810-820.
    4. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    5. Ghasemi, Mojtaba & Ghavidel, Sahand & Akbari, Ebrahim & Vahed, Ali Azizi, 2014. "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos," Energy, Elsevier, vol. 73(C), pages 340-353.
    6. Hur, J. & Baldick, R., 2016. "A new merit function to accommodate high wind power penetration of WGRs (wind generating resources)," Energy, Elsevier, vol. 108(C), pages 34-40.
    7. Zopounidis, C., 1999. "Multicriteria decision aid in financial management," European Journal of Operational Research, Elsevier, vol. 119(2), pages 404-415, December.
    8. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    9. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    10. Arul, R. & Velusami, S. & Ravi, G., 2015. "A new algorithm for combined dynamic economic emission dispatch with security constraints," Energy, Elsevier, vol. 79(C), pages 496-511.
    11. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    12. Fitiwi, Desta Z. & de Cuadra, F. & Olmos, L. & Rivier, M., 2015. "A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty," Energy, Elsevier, vol. 90(P2), pages 1360-1376.
    13. Chen, J.J. & Wu, Q.H. & Zhang, L.L. & Wu, P.Z., 2017. "Multi-objective mean–variance–skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties," European Journal of Operational Research, Elsevier, vol. 263(2), pages 719-732.
    14. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Multi-objective optimization and decision making for power dispatch of a large-scale integrated energy system with distributed DHCs embedded," Applied Energy, Elsevier, vol. 154(C), pages 369-379.
    15. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    16. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    17. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    18. Guh, Yuh-Yuan, 1997. "Introduction to a new weighting method -- Hierarchy consistency analysis," European Journal of Operational Research, Elsevier, vol. 102(1), pages 215-226, October.
    19. Hajkowicz, Stefan, 2006. "Taking a closer look at multiple criteria analysis and economic evaluation," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139785, Australian Agricultural and Resource Economics Society.
    20. Meløn, Mønica García & Aragonés Beltran, Pablo & Carmen González Cruz, M., 2008. "An AHP-based evaluation procedure for Innovative Educational Projects: A face-to-face vs. computer-mediated case study," Omega, Elsevier, vol. 36(5), pages 754-765, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:510-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.