IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318550.html
   My bibliography  Save this article

Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model

Author

Listed:
  • Khaloie, Hooman
  • Abdollahi, Amir
  • Shafie-khah, Miadreza
  • Anvari-Moghaddam, Amjad
  • Nojavan, Sayyad
  • Siano, Pierluigi
  • Catalão, João P.S.

Abstract

Renewable energy resources such as wind, either individually or integrated with other resources, are widely considered in different power system studies, especially self-scheduling and offering strategy problems. In the current paper, a three-stage stochastic multi-objective offering framework based on mixed-integer programming formulation for a wind-thermal-energy storage generation company in the energy and spinning reserve markets is proposed. The commitment decisions of dispatchable energy sources, the offering curves of the generation company in the energy and spinning reserve markets, and dealing with energy deviations in the balancing market are the decisions of the proposed three-stage offering strategy problem, respectively. In the suggested methodology, the participation model of the energy storage system in the spinning reserve market extends to both charging and discharging modes. The proposed framework concurrently maximizes generation company’s expected profit and minimizes the expected emission of thermal units applying lexicographic optimization and hybrid augmented-weighted ∊-constraint method. In this regard, the uncertainties associated with imbalance prices and wind power output as well as day-ahead energy and spinning reserve market prices are modeled via a set of scenarios. Eventually, two different strategies, i.e., a preference-based approach and emission trading pattern, are utilized to select the most favored solution among Pareto optimal solutions. Numerical results reveal that taking advantage of spinning reserve market alongside with energy market will substantially increase the profitability of the generation company. Also, the results disclose that spinning reserve market is more lucrative than the energy market for the energy storage system in the offering strategy structure.

Suggested Citation

  • Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318550
    DOI: 10.1016/j.apenergy.2019.114168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nojavan, Sayyad & Najafi-Ghalelou, Afshin & Majidi, Majid & Zare, Kazem, 2018. "Optimal bidding and offering strategies of merchant compressed air energy storage in deregulated electricity market using robust optimization approach," Energy, Elsevier, vol. 142(C), pages 250-257.
    2. Tabandeh, Abbas & Abdollahi, Amir & Rashidinejad, Masoud, 2016. "Reliability constrained congestion management with uncertain negawatt demand response firms considering repairable advanced metering infrastructures," Energy, Elsevier, vol. 104(C), pages 213-228.
    3. Liu, Yangyang & Shen, Zhongqi & Tang, Xiaowei & Lian, Hongbo & Li, Jiarui & Gong, Jinxia, 2019. "Worst-case conditional value-at-risk based bidding strategy for wind-hydro hybrid systems under probability distribution uncertainties," Applied Energy, Elsevier, vol. 256(C).
    4. Kose, Faruk & Kaya, Mehmet Numan, 2013. "Analysis on meeting the electric energy demand of an active plant with a wind-hydro hybrid power station in Konya, Turkey: Konya water treatment plant," Renewable Energy, Elsevier, vol. 55(C), pages 196-201.
    5. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
    6. Gomes, I.L.R. & Pousinho, H.M.I. & Melício, R. & Mendes, V.M.F., 2017. "Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market," Energy, Elsevier, vol. 124(C), pages 310-320.
    7. Homa Rashidizadeh-Kermani & Hamid Reza Najafi & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2018. "Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets," Energies, MDPI, vol. 11(9), pages 1-20, September.
    8. Khalid, Muhammad & Aguilera, Ricardo P. & Savkin, Andrey V. & Agelidis, Vassilios G., 2018. "On maximizing profit of wind-battery supported power station based on wind power and energy price forecasting," Applied Energy, Elsevier, vol. 211(C), pages 764-773.
    9. Monfared, Houman Jamshidi & Ghasemi, Ahmad & Loni, Abdolah & Marzband, Mousa, 2019. "A hybrid price-based demand response program for the residential micro-grid," Energy, Elsevier, vol. 185(C), pages 274-285.
    10. Shafie-khah, M. & Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, P. & Moghaddam, M.P. & Sheikh-El-Eslami, M.K. & Catalão, J.P.S., 2016. "Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability," Applied Energy, Elsevier, vol. 162(C), pages 601-612.
    11. Al-Swaiti, Mustafa S. & Al-Awami, Ali T. & Khalid, Mohammad Waqas, 2017. "Co-optimized trading of wind-thermal-pumped storage system in energy and regulation markets," Energy, Elsevier, vol. 138(C), pages 991-1005.
    12. Reddy, S. Surender, 2017. "Optimal scheduling of thermal-wind-solar power system with storage," Renewable Energy, Elsevier, vol. 101(C), pages 1357-1368.
    13. Afshar, Karim & Ghiasvand, Farshad Shamsini & Bigdeli, Nooshin, 2018. "Optimal bidding strategy of wind power producers in pay-as-bid power markets," Renewable Energy, Elsevier, vol. 127(C), pages 575-586.
    14. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    15. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    16. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
    17. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    18. Abbasi, Mohammad Hossein & Taki, Mehrdad & Rajabi, Amin & Li, Li & Zhang, Jiangfeng, 2019. "Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach," Applied Energy, Elsevier, vol. 239(C), pages 1294-1307.
    19. Gao, Xiang & Chan, Ka Wing & Xia, Shiwei & Zhou, Bin & Lu, Xi & Xu, Da, 2019. "Risk-constrained offering strategy for a hybrid power plant consisting of wind power producer and electric vehicle aggregator," Energy, Elsevier, vol. 177(C), pages 183-191.
    20. Kong, Xiangyu & Xiao, Jie & Wang, Chengshan & Cui, Kai & Jin, Qiang & Kong, Deqian, 2019. "Bi-level multi-time scale scheduling method based on bidding for multi-operator virtual power plant," Applied Energy, Elsevier, vol. 249(C), pages 178-189.
    21. Chen, J.J. & Zhuang, Y.B. & Li, Y.Z. & Wang, P. & Zhao, Y.L. & Zhang, C.S., 2017. "Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model," Applied Energy, Elsevier, vol. 189(C), pages 534-554.
    22. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    23. Laia, R. & Pousinho, H.M.I. & Melíco, R. & Mendes, V.M.F., 2016. "Bidding strategy of wind-thermal energy producers," Renewable Energy, Elsevier, vol. 99(C), pages 673-681.
    24. Moradi-Dalvand, M. & Mohammadi-Ivatloo, B. & Amjady, N. & Zareipour, H. & Mazhab-Jafari, A., 2015. "Self-scheduling of a wind producer based on Information Gap Decision Theory," Energy, Elsevier, vol. 81(C), pages 588-600.
    25. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    26. Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2019. "Optimal strategic offerings for a conventional producer in jointly cleared energy and balancing markets under high penetration of wind power production," Applied Energy, Elsevier, vol. 244(C), pages 16-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    2. Xiao, Xiangsheng & Wang, Jianxiao & Lin, Rui & Hill, David J. & Kang, Chongqing, 2020. "Large-scale aggregation of prosumers toward strategic bidding in joint energy and regulation markets," Applied Energy, Elsevier, vol. 271(C).
    3. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    4. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Optimal operation value of combined wind power and energy storage in multi-stage electricity markets," Applied Energy, Elsevier, vol. 235(C), pages 1153-1168.
    5. Li, Qirui & Yang, Zhifang & Yu, Juan & Li, Wenyuan, 2023. "Impacts of previous revenues on bidding strategies in electricity market: A quantitative analysis," Applied Energy, Elsevier, vol. 345(C).
    6. Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
    7. Akbari, Ebrahim & Hooshmand, Rahmat-Allah & Gholipour, Mehdi & Parastegari, Moein, 2019. "Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets," Energy, Elsevier, vol. 171(C), pages 535-546.
    8. Dimitriadis, Christos N. & Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2022. "Strategic bidding of an energy storage agent in a joint energy and reserve market under stochastic generation," Energy, Elsevier, vol. 242(C).
    9. Yongqi Zhao & Jiajia Chen, 2021. "A Quantitative Risk-Averse Model for Optimal Management of Multi-Source Standalone Microgrid with Demand Response and Pumped Hydro Storage," Energies, MDPI, vol. 14(9), pages 1-17, May.
    10. Isaias Gomes & Rui Melicio & Victor Mendes, 2020. "Comparison between Inflexible and Flexible Charging of Electric Vehicles—A Study from the Perspective of an Aggregator," Energies, MDPI, vol. 13(20), pages 1-13, October.
    11. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    12. Emad M. Ahmed & Mokhtar Aly & Ahmed Elmelegi & Abdullah G. Alharbi & Ziad M. Ali, 2019. "Multifunctional Distributed MPPT Controller for 3P4W Grid-Connected PV Systems in Distribution Network with Unbalanced Loads," Energies, MDPI, vol. 12(24), pages 1-19, December.
    13. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    14. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    15. Xiong, Chang & Su, Yixin & Wang, Hao & Dong, Zhengcheng & Tian, Meng & Shi, Binghua, 2024. "Consensus-based decentralized scheduling method for collaborative operation in seaport virtual power plant," Applied Energy, Elsevier, vol. 373(C).
    16. del Río, Pablo & Kiefer, Christoph P., 2023. "Academic research on renewable electricity auctions: Taking stock and looking forward," Energy Policy, Elsevier, vol. 173(C).
    17. Nouri, Alireza & Khodaei, Hossein & Darvishan, Ayda & Sharifian, Seyedmehdi & Ghadimi, Noradin, 2018. "Optimal performance of fuel cell-CHP-battery based micro-grid under real-time energy management: An epsilon constraint method and fuzzy satisfying approach," Energy, Elsevier, vol. 159(C), pages 121-133.
    18. Abbasi, Mohammad Hossein & Taki, Mehrdad & Rajabi, Amin & Li, Li & Zhang, Jiangfeng, 2019. "Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach," Applied Energy, Elsevier, vol. 239(C), pages 1294-1307.
    19. Fang, Xichen & Guo, Hongye & Zhang, Xian & Wang, Xuanyuan & Chen, Qixin, 2022. "An efficient and incentive-compatible market design for energy storage participation," Applied Energy, Elsevier, vol. 311(C).
    20. Endemaño-Ventura, Lázaro & Serrano González, Javier & Roldán Fernández, Juan Manuel & Burgos Payán, Manuel & Riquelme Santos, Jesús Manuel, 2021. "Optimal energy bidding for renewable plants: A practical application to an actual wind farm in Spain," Renewable Energy, Elsevier, vol. 175(C), pages 1111-1126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.