IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp1357-1368.html
   My bibliography  Save this article

Optimal scheduling of thermal-wind-solar power system with storage

Author

Listed:
  • Reddy, S. Surender

Abstract

The incorporation of renewable energy resources (RERs) into electrical grid is very challenging problem due to their intermittent nature. This paper solves an optimal scheduling problem considering the hybrid generation system. The primary components of hybrid power system include conventional thermal generators, wind farms and solar photovoltaic (PV) modules with batteries. The main critical problem in operating the wind farm or solar PV plant is that these RERs cannot be scheduled in the same manner as conventional generators, because they involve climate factors such as wind velocity and solar irradiation. This paper proposes a new strategy for the optimal scheduling problem taking into account the impact of uncertainties in wind, solar PV and load demand forecasts. The simulation results for IEEE 30 and 300 bus test systems with Genetic Algorithm (GA) and Two-Point Estimate Method (2PEM) have been obtained to test the effectiveness of the proposed optimal scheduling strategy. Results for sample systems with GA and two-point estimate based optimal power flow, and GA and Monte Carlo Simulation (MCS) have been obtained to ascertain the effectiveness of proposed method. Some of the results are also compared with the Interior Point method. From the simulation studies, it can be observed that with a marginal increase in the cost of day-ahead generation schedule, a substantial reduction in real time mean adjustment cost is obtained.

Suggested Citation

  • Reddy, S. Surender, 2017. "Optimal scheduling of thermal-wind-solar power system with storage," Renewable Energy, Elsevier, vol. 101(C), pages 1357-1368.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:1357-1368
    DOI: 10.1016/j.renene.2016.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116308874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddy, S. Surender & Abhyankar, A.R. & Bijwe, P.R., 2011. "Reactive power price clearing using multi-objective optimization," Energy, Elsevier, vol. 36(5), pages 3579-3589.
    2. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    3. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
    4. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    5. of England, Bank, 2016. "Markets and operations," Bank of England Quarterly Bulletin, Bank of England, vol. 56(4), pages 212-221.
    6. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Luo & Shumin Miao & Chuntian Cheng & Yi Lei & Gang Chen & Lang Gao, 2019. "Long-Term Generation Scheduling for Cascade Hydropower Plants Considering Price Correlation between Multiple Markets," Energies, MDPI, vol. 12(12), pages 1-17, June.
    2. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    3. Epiney, A. & Rabiti, C. & Talbot, P. & Alfonsi, A., 2020. "Economic analysis of a nuclear hybrid energy system in a stochastic environment including wind turbines in an electricity grid," Applied Energy, Elsevier, vol. 260(C).
    4. Scheubel, Christopher & Zipperle, Thomas & Tzscheutschler, Peter, 2017. "Modeling of industrial-scale hybrid renewable energy systems (HRES) – The profitability of decentralized supply for industry," Renewable Energy, Elsevier, vol. 108(C), pages 52-63.
    5. Sreepradha, Chandrasekharan & Panda, Rames Chandra & Bhuvaneswari, Natrajan Swaminathan, 2017. "Mathematical model for integrated coal fired thermal boiler using physical laws," Energy, Elsevier, vol. 118(C), pages 985-998.
    6. Zhen, J.L. & Huang, G.H. & Li, W. & Liu, Z.P. & Wu, C.B., 2017. "An inexact optimization model for regional electric system steady operation management considering integrated renewable resources," Energy, Elsevier, vol. 135(C), pages 195-209.
    7. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2017. "Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity," Applied Energy, Elsevier, vol. 188(C), pages 604-619.
    8. Chua, Kein Huat & Lim, Yun Seng & Morris, Stella, 2017. "A novel fuzzy control algorithm for reducing the peak demands using energy storage system," Energy, Elsevier, vol. 122(C), pages 265-273.
    9. Heetae Kim & Jinwoo Bae & Seoin Baek & Donggyun Nam & Hyunsung Cho & Hyun Joon Chang, 2017. "Comparative Analysis between the Government Micro-Grid Plan and Computer Simulation Results Based on Real Data: The Practical Case for a South Korean Island," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
    10. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad, 2020. "Optimal operating strategy of high-temperature heat and power storage system coupled with a wind farm in energy market," Energy, Elsevier, vol. 210(C).
    11. Escalante Soberanis, M.A. & Mithrush, T. & Bassam, A. & Mérida, W., 2018. "A sensitivity analysis to determine technical and economic feasibility of energy storage systems implementation: A flow battery case study," Renewable Energy, Elsevier, vol. 115(C), pages 547-557.
    12. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    13. Every, Jeremy & Li, Li & Dorrell, David G., 2017. "Leveraging smart meter data for economic optimization of residential photovoltaics under existing tariff structures and incentive schemes," Applied Energy, Elsevier, vol. 201(C), pages 158-173.
    14. Aliasghari, Parinaz & Zamani-Gargari, Milad & Mohammadi-Ivatloo, Behnam, 2018. "Look-ahead risk-constrained scheduling of wind power integrated system with compressed air energy storage (CAES) plant," Energy, Elsevier, vol. 160(C), pages 668-677.
    15. Fan, Shifa & Gao, Yuanwen, 2019. "Numerical analysis on the segmented annular thermoelectric generator for waste heat recovery," Energy, Elsevier, vol. 183(C), pages 35-47.
    16. Wang, Luhao & Li, Qiqiang & Ding, Ran & Sun, Mingshun & Wang, Guirong, 2017. "Integrated scheduling of energy supply and demand in microgrids under uncertainty: A robust multi-objective optimization approach," Energy, Elsevier, vol. 130(C), pages 1-14.
    17. Chang, Carolyn W. & Li, Xiaodan & Lin, Edward M.H. & Yu, Min-Teh, 2018. "Systemic risk, interconnectedness, and non-core activities in Taiwan insurance industry," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 273-284.
    18. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    19. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    20. Matteo Foglia & Eliana Angelini, 2019. "An explorative analysis of Italy banking financial stability," Economics Bulletin, AccessEcon, vol. 39(2), pages 1294-1308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:1357-1368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.