IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v309y2022ics0306261921016925.html
   My bibliography  Save this article

Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery

Author

Listed:
  • Guo, Yi
  • Ming, Bo
  • Huang, Qiang
  • Wang, Yimin
  • Zheng, Xudong
  • Zhang, Wei

Abstract

Optimizing day-ahead generation schedules of hydro–wind–photovoltaic (PV) complementary systems (HWPCSs) can help to promote the accommodation of wind and solar energies. However, it is challenging to formulate appropriate generation schedules for the large HWPCS that contains cascade hydropower plants, in particular, a steady requirement of power delivery is considered in the optimization model. To further improve complementary performance of the large HWPCS, we propose a risk-averse day-ahead generation scheduling approach that considers the steady requirement of power delivery. First, a representative scenario set is used to characterize forecast uncertainties of the wind and PV power. Then, a multi-objective optimal generation scheduling model with consideration of the operational risks of electricity curtailment and power shortage is proposed. Finally, a two-layer nested optimization framework is designed to derive the system’s generation schedule. The clean energy base in the upper Yellow River basin, China was selected as a case study. The results show that: (1) forecast uncertainties of wind and PV power are more likely to induce power shortage risk in summer and autumn, but to induce electricity curtailment risk in spring and winter; (2) without using extra constraint handling strategies, the proposed approach could directly yield a stair-shaped power delivery curve, which is good for long-distance power transmission applications; and (3) compared with a traditional method without considering the operational risks, the proposed generation scheduling approach could significantly reduce the comprehensive risk rate by 65% on average, while the cascade hydropower production and peak shaving performance are satisfactory. Therefore, the proposed approach is effective in guiding the day-ahead generation scheduling of the HWPCSs that contain cascade hydropower plants.

Suggested Citation

  • Guo, Yi & Ming, Bo & Huang, Qiang & Wang, Yimin & Zheng, Xudong & Zhang, Wei, 2022. "Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery," Applied Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016925
    DOI: 10.1016/j.apenergy.2021.118467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921016925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Chengguo & Cheng, Chuntian & Wang, Peilin & Shen, Jianjian & Wu, Xinyu, 2019. "Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants," Applied Energy, Elsevier, vol. 242(C), pages 285-293.
    2. Jurasz, Jakub & Ciapała, Bartłomiej, 2017. "Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird," Applied Energy, Elsevier, vol. 198(C), pages 21-35.
    3. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    4. Hu, Yanlong & Huang, Weibin & Wang, Jing & Chen, Shijun & Zhang, Jie, 2016. "Current status, challenges, and perspectives of Sichuan׳s renewable energy development in Southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1373-1385.
    5. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    6. Ding, Huajie & Hu, Zechun & Song, Yonghua, 2012. "Stochastic optimization of the daily operation of wind farm and pumped-hydro-storage plant," Renewable Energy, Elsevier, vol. 48(C), pages 571-578.
    7. Wang, Fengjuan & Xie, Yachen & Xu, Jiuping, 2019. "Reliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: Case study from China," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    9. Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
    10. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    11. Jurasz, Jakub & Kies, Alexander & Zajac, Pawel, 2020. "Synergetic operation of photovoltaic and hydro power stations on a day-ahead energy market," Energy, Elsevier, vol. 212(C).
    12. Bayón, L. & Grau, J.M. & Ruiz, M.M. & Suárez, P.M., 2016. "A comparative economic study of two configurations of hydro-wind power plants," Energy, Elsevier, vol. 112(C), pages 8-16.
    13. Mazidi, Mohammadreza & Monsef, Hassan & Siano, Pierluigi, 2016. "Design of a risk-averse decision making tool for smart distribution network operators under severe uncertainties: An IGDT-inspired augment ε-constraint based multi-objective approach," Energy, Elsevier, vol. 116(P1), pages 214-235.
    14. Tan, Qiaofeng & Wen, Xin & Sun, Yuanliang & Lei, Xiaohui & Wang, Zhenni & Qin, Guanghua, 2021. "Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty," Applied Energy, Elsevier, vol. 285(C).
    15. Chen, J.J. & Zhuang, Y.B. & Li, Y.Z. & Wang, P. & Zhao, Y.L. & Zhang, C.S., 2017. "Risk-aware short term hydro-wind-thermal scheduling using a probability interval optimization model," Applied Energy, Elsevier, vol. 189(C), pages 534-554.
    16. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    17. Cheng, Qian & Ming, Bo & Liu, Pan & Huang, Kangdi & Gong, Yu & Li, Xiao & Zheng, Yalian, 2021. "Solving hydro unit commitment problems with multiple hydraulic heads based on a two-layer nested optimization method," Renewable Energy, Elsevier, vol. 172(C), pages 317-326.
    18. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    19. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    20. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.
    21. Xiao, Hao & Pei, Wei & Deng, Wei & Ma, Tengfei & Zhang, Shizhong & Kong, Li, 2021. "Enhancing risk control ability of distribution network for improved renewable energy integration through flexible DC interconnection," Applied Energy, Elsevier, vol. 284(C).
    22. Ming, Bo & Liu, Pan & Guo, Shenglian & Zhang, Xiaoqi & Feng, Maoyuan & Wang, Xianxun, 2017. "Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long- and short-term operational decisions," Applied Energy, Elsevier, vol. 204(C), pages 432-445.
    23. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2014. "The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources," Applied Energy, Elsevier, vol. 134(C), pages 75-89.
    24. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    25. Kisvari, Adam & Lin, Zi & Liu, Xiaolei, 2021. "Wind power forecasting – A data-driven method along with gated recurrent neural network," Renewable Energy, Elsevier, vol. 163(C), pages 1895-1909.
    26. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    27. Beluco, Alexandre & Kroeff de Souza, Paulo & Krenzinger, Arno, 2012. "A method to evaluate the effect of complementarity in time between hydro and solar energy on the performance of hybrid hydro PV generating plants," Renewable Energy, Elsevier, vol. 45(C), pages 24-30.
    28. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    29. Li, Fang-Fang & Qiu, Jun, 2016. "Multi-objective optimization for integrated hydro–photovoltaic power system," Applied Energy, Elsevier, vol. 167(C), pages 377-384.
    30. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    31. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    32. Xu, Bin & Zhu, Feilin & Zhong, Ping-an & Chen, Juan & Liu, Weifeng & Ma, Yufei & Guo, Le & Deng, Xiaoliang, 2019. "Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    33. Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
    34. Wang, Xianxun & Mei, Yadong & Kong, Yanjun & Lin, Yuru & Wang, Hao, 2017. "Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system," Energy, Elsevier, vol. 134(C), pages 813-839.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yunhong & Wang, Honglei & Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2024. "Stochastic optimization of system configurations and operation of hybrid cascade hydro-wind-photovoltaic with battery for uncertain medium- and long-term load growth," Applied Energy, Elsevier, vol. 364(C).
    2. Xiaoxia Liang & Yi Shi & Yan Li, 2023. "Research on the Yellow River Basin Energy Structure Transformation Path under the “Double Carbon” Goal," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    3. Li, He & Liu, Pan & Guo, Shenglian & Zuo, Qiting & Cheng, Lei & Tao, Jie & Huang, Kangdi & Yang, Zhikai & Han, Dongyang & Ming, Bo, 2022. "Integrating teleconnection factors into long-term complementary operating rules for hybrid power systems: A case study of Longyangxia hydro-photovoltaic plant in China," Renewable Energy, Elsevier, vol. 186(C), pages 517-534.
    4. Guo, Xusheng & Lou, Suhua & Chen, Zhe & Wu, Yaowu, 2022. "Flexible operation of integrated energy system with HVDC infeed considering multi-retrofitted combined heat and power units," Applied Energy, Elsevier, vol. 325(C).
    5. Wenlin Yuan & Zhangchi Sun, 2024. "Long-Term Optimal Scheduling of Hydro-Photovoltaic Hybrid Systems Considering Short-Term Operation Performance," Energies, MDPI, vol. 17(21), pages 1-26, October.
    6. Feng, Zhong-kai & Huang, Qing-qing & Niu, Wen-jing & Su, Hua-ying & Li, Shu-shan & Wu, Hui-jun & Wang, Jia-yang, 2024. "Peak operation optimization of cascade hydropower reservoirs and solar power plants considering output forecasting uncertainty," Applied Energy, Elsevier, vol. 358(C).
    7. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    8. Cheng, Qian & Liu, Pan & Xia, Jun & Ming, Bo & Cheng, Lei & Chen, Jie & Xie, Kang & Liu, Zheyuan & Li, Xiao, 2022. "Contribution of complementary operation in adapting to climate change impacts on a large-scale wind–solar–hydro system: A case study in the Yalong River Basin, China," Applied Energy, Elsevier, vol. 325(C).
    9. Xu Guo & Yang Li & Feng Wu & Linjun Shi & Yuzhe Chen & Hailun Wang, 2024. "Optimal Battery Storage Configuration for High-Proportion Renewable Power Systems Considering Minimum Inertia Requirements," Sustainability, MDPI, vol. 16(17), pages 1-23, September.
    10. Liu, Zhi-Feng & Zhao, Shi-Xiang & Zhao, Shuang-Le & You, Guo-Dong & Hou, Xiao-Xin & Yu, Jia-Li & Li, Ling-Ling & Chen, Bo, 2023. "Improving the economic and environmental benefits of the energy system: A novel hybrid economic emission dispatch considering clean energy power uncertainty," Energy, Elsevier, vol. 285(C).
    11. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    12. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    13. Wang, Zizhao & Wu, Feng & Li, Yang & Shi, Linjun & Lee, Kwang Y. & Wu, Jiawei, 2023. "Itô-theory-based multi-time scale dispatch approach for cascade hydropower-photovoltaic complementary system," Renewable Energy, Elsevier, vol. 202(C), pages 127-142.
    14. Lai, Chunyang & Kazemtabrizi, Behzad, 2024. "A novel data-driven tighten-constraint method for wind-hydro hybrid power system to improve day-ahead plan performance in real-time operation," Applied Energy, Elsevier, vol. 371(C).
    15. Yuanyuan Liu & Hao Zhang & Pengcheng Guo & Chenxi Li & Shuai Wu, 2024. "Optimal Scheduling of a Cascade Hydropower Energy Storage System for Solar and Wind Energy Accommodation," Energies, MDPI, vol. 17(11), pages 1-23, June.
    16. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Luo, Xinran & Liu, Weibo & Xu, Weifeng & Huang, Kangdi & Xia, Jun, 2023. "Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency," Applied Energy, Elsevier, vol. 339(C).
    17. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
    18. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    19. Hongwei Li & Qing Xu & Shitao Wang & Huihui Song, 2022. "Peak Shaving Methods of Distributed Generation Clusters Using Dynamic Evaluation and Self-Renewal Mechanism," Energies, MDPI, vol. 15(19), pages 1-17, September.
    20. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    21. Jiang, Jianhua & Ming, Bo & Liu, Pan & Huang, Qiang & Guo, Yi & Chang, Jianxia & Zhang, Wei, 2023. "Refining long-term operation of large hydro–photovoltaic–wind hybrid systems by nesting response functions," Renewable Energy, Elsevier, vol. 204(C), pages 359-371.
    22. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    23. Liu, Zhi-Feng & Zhao, Shi-Xiang & Zhang, Xi-Jia & Tang, Yu & You, Guo-Dong & Li, Ji-Xiang & Zhao, Shuang-Le & Hou, Xiao-Xin, 2023. "Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method," Renewable Energy, Elsevier, vol. 219(P1).
    24. Li, Yan & Ming, Bo & Huang, Qiang & Wang, Yimin & Liu, Pan & Guo, Pengcheng, 2022. "Identifying effective operating rules for large hydro–solar–wind hybrid systems based on an implicit stochastic optimization framework," Energy, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yi & Ming, Bo & Huang, Qiang & Liu, Pan & Wang, Yimin & Fang, Wei & Zhang, Wei, 2022. "Evaluating effects of battery storage on day-ahead generation scheduling of large hydro–wind–photovoltaic complementary systems," Applied Energy, Elsevier, vol. 324(C).
    2. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    3. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    4. Jiang, Jianhua & Ming, Bo & Liu, Pan & Huang, Qiang & Guo, Yi & Chang, Jianxia & Zhang, Wei, 2023. "Refining long-term operation of large hydro–photovoltaic–wind hybrid systems by nesting response functions," Renewable Energy, Elsevier, vol. 204(C), pages 359-371.
    5. Feng, Zhong-kai & Huang, Qing-qing & Niu, Wen-jing & Su, Hua-ying & Li, Shu-shan & Wu, Hui-jun & Wang, Jia-yang, 2024. "Peak operation optimization of cascade hydropower reservoirs and solar power plants considering output forecasting uncertainty," Applied Energy, Elsevier, vol. 358(C).
    6. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    7. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    8. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhang, Jingwen, 2019. "Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation," Energy, Elsevier, vol. 179(C), pages 268-279.
    9. Jiang, Jianhua & Ming, Bo & Huang, Qiang & Guo, Yi & Shang, Jia’nan & Jurasz, Jakub & Liu, Pan, 2023. "A holistic techno-economic evaluation framework for sizing renewable power plant in a hydro-based hybrid generation system," Applied Energy, Elsevier, vol. 348(C).
    10. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    11. Li, He & Liu, Pan & Guo, Shenglian & Cheng, Lei & Huang, Kangdi & Feng, Maoyuan & He, Shaokun & Ming, Bo, 2021. "Deriving adaptive long-term complementary operating rules for a large-scale hydro-photovoltaic hybrid power plant using ensemble Kalman filter," Applied Energy, Elsevier, vol. 301(C).
    12. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    13. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Luo, Xinran & Liu, Weibo & Xu, Weifeng & Huang, Kangdi & Xia, Jun, 2023. "Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency," Applied Energy, Elsevier, vol. 339(C).
    14. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    15. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    16. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    17. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    18. Wang, Zizhao & Li, Yang & Wu, Feng & Wu, Jiawei & Shi, Linjun & Lin, Keman, 2024. "Multi-objective day-ahead scheduling of cascade hydropower-photovoltaic complementary system with pumping installation," Energy, Elsevier, vol. 290(C).
    19. Lai, Chunyang & Kazemtabrizi, Behzad, 2024. "A novel data-driven tighten-constraint method for wind-hydro hybrid power system to improve day-ahead plan performance in real-time operation," Applied Energy, Elsevier, vol. 371(C).
    20. Li, He & Liu, Pan & Guo, Shenglian & Ming, Bo & Cheng, Lei & Yang, Zhikai, 2019. "Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization," Applied Energy, Elsevier, vol. 238(C), pages 863-875.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.