IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2667-d549689.html
   My bibliography  Save this article

Constraints of Parametrically Defined Guide Vanes for a High-Head Francis Turbine

Author

Listed:
  • Filip Stojkovski

    (Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia)

  • Marija Lazarevikj

    (Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia)

  • Zoran Markov

    (Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia)

  • Igor Iliev

    (Waterpower Laboratory, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz’ Vei 4, 7034 Trondheim, Norway)

  • Ole Gunnar Dahlhaug

    (Waterpower Laboratory, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz’ Vei 4, 7034 Trondheim, Norway)

Abstract

This paper is focused on the guide vane cascade as one of the most crucial stationary sub-systems of the hydraulic turbine, which needs to provide efficient inflow hydraulic conditions to the runner. The guide vanes direct the flow from the spiral casing and the stay vanes towards the runner, regulating the desired discharge. A parametric design tool with normalized geometrical constraints was created in MATLAB, suitable for generating guide vane cascade geometries for Francis turbines. The goal is to determine the limits of these constraints, which will lead to future faster prediction of initial guide vane configurations in the turbine optimal operating region. Several geometries are developed using preliminary design data of the turbine and are investigated using CFD simulations close to the best efficiency point (BEP) of the turbine. This research is part of the Horizon-2020—HydroFlex project led by the Norwegian University of Science and Technology (NTNU), focusing on the development of a flexible hydropower generation.

Suggested Citation

  • Filip Stojkovski & Marija Lazarevikj & Zoran Markov & Igor Iliev & Ole Gunnar Dahlhaug, 2021. "Constraints of Parametrically Defined Guide Vanes for a High-Head Francis Turbine," Energies, MDPI, vol. 14(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2667-:d:549689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iliev, Igor & Trivedi, Chirag & Dahlhaug, Ole Gunnar, 2019. "Variable-speed operation of Francis turbines: A review of the perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 109-121.
    2. Ravi Koirala & Baoshan Zhu & Hari Prasad Neopane, 2016. "Effect of Guide Vane Clearance Gap on Francis Turbine Performance," Energies, MDPI, vol. 9(4), pages 1-14, April.
    3. Trivedi, Chirag & Iliev, Igor & Dahlhaug, Ole Gunnar & Markov, Zoran & Engstrom, Fredrik & Lysaker, Henning, 2020. "Investigation of a Francis turbine during speed variation: Inception of cavitation," Renewable Energy, Elsevier, vol. 166(C), pages 147-162.
    4. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2018. "Flow measurements around guide vanes of Francis turbine: A PIV approach," Renewable Energy, Elsevier, vol. 126(C), pages 177-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Zhaoheng & Tao, Ran & Yao, Zhifeng & Liu, Weichao & Xiao, Ruofu, 2022. "Effects of guide vane shape on the performances of pump-turbine: A comparative study in energy storage and power generation," Renewable Energy, Elsevier, vol. 197(C), pages 268-287.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wen-Quan & Yu, Zhi-Feng & Yan, Yan & Wei, Xin-Yu, 2024. "Numerical investigation on vortex characteristics in a low-head Francis turbine operating of adjustable-speed at part load conditions," Energy, Elsevier, vol. 302(C).
    2. Xu, Lianchen & Kan, Kan & Zheng, Yuan & Liu, Demin & Binama, Maxime & Xu, Zhe & Yan, Xiaotong & Guo, Mengqi & Chen, Huixiang, 2024. "Rotating stall mechanism of pump-turbine in hump region: An insight into vortex evolution," Energy, Elsevier, vol. 292(C).
    3. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    4. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    5. Eva Bílková & Jiří Souček & Martin Kantor & Roman Kubíček & Petr Nowak, 2023. "Variable-Speed Propeller Turbine for Small Hydropower Applications," Energies, MDPI, vol. 16(9), pages 1-14, April.
    6. Koirala, Ravi & Neopane, Hari Prasad & Shrestha, Oblique & Zhu, Baoshan & Thapa, Bhola, 2017. "Selection of guide vane profile for erosion handling in Francis turbines," Renewable Energy, Elsevier, vol. 112(C), pages 328-336.
    7. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    8. Koirala, Ravi & Neopane, Hari Prasad & Zhu, Baoshan & Thapa, Bhola, 2019. "Effect of sediment erosion on flow around guide vanes of Francis turbine," Renewable Energy, Elsevier, vol. 136(C), pages 1022-1027.
    9. Morabito, Alessandro & Vagnoni, Elena, 2024. "CFD-based analysis of pumped storage power plants implementing hydraulic short circuit operations," Applied Energy, Elsevier, vol. 369(C).
    10. Krzemianowski, Zbigniew & Steller, Janusz, 2021. "High specific speed Francis turbine for small hydro purposes - Design methodology based on solving the inverse problem in fluid mechanics and the cavitation test experience," Renewable Energy, Elsevier, vol. 169(C), pages 1210-1228.
    11. Kim, Seung-Jun & Yang, Hyeon-Mo & Park, Jungwan & Kim, Jin-Hyuk, 2022. "Investigation of internal flow characteristics by a Thoma number in the turbine mode of a Pump–Turbine model under high flow rate," Renewable Energy, Elsevier, vol. 199(C), pages 445-461.
    12. Nirmal Acharya & Saroj Gautam & Sailesh Chitrakar & Chirag Trivedi & Ole Gunnar Dahlhaug, 2021. "Leakage Vortex Progression through a Guide Vane’s Clearance Gap and the Resulting Pressure Fluctuation in a Francis Turbine," Energies, MDPI, vol. 14(14), pages 1-19, July.
    13. Kumar, Prashant & Singal, S.K. & Gohil, Pankaj P., 2024. "A technical review on combined effect of cavitation and silt erosion on Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    14. Yabin Liu & Lei Tan & Binbin Wang, 2018. "A Review of Tip Clearance in Propeller, Pump and Turbine," Energies, MDPI, vol. 11(9), pages 1-30, August.
    15. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.
    16. Chirag Trivedi & Igor Iliev & Ole Gunnar Dahlhaug, 2020. "Numerical Study of a Francis Turbine over Wide Operating Range: Some Practical Aspects of Verification," Sustainability, MDPI, vol. 12(10), pages 1-10, May.
    17. Koirala, Ravi & Thapa, Bhola & Neopane, Hari Prasad & Zhu, Baoshan, 2017. "A review on flow and sediment erosion in guide vanes of Francis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1054-1065.
    18. Wen-Tao Su & Wei Zhao & Maxime Binama & Yue Zhao & Jian-Ying Huang & Xue-Ren Chen, 2022. "Experimental Francis Turbine Cavitation Performances of a Hydro-Energy Plant," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    19. Xiaoxia Hou & Yongguang Cheng & Zhiyan Yang & Ke Liu & Xiaoxi Zhang & Demin Liu, 2021. "Influence of Clearance Flow on Dynamic Hydraulic Forces of Pump-Turbine during Runaway Transient Process," Energies, MDPI, vol. 14(10), pages 1-20, May.
    20. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2667-:d:549689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.