IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1238-d1044892.html
   My bibliography  Save this article

Performance Assessment for Primary Frequency Regulation of Variable-Speed Pumped Storage Plant in Isolated Power Systems

Author

Listed:
  • Sha Li

    (Institute of Water Resources and Hydropower Research, Northwest A&F University, Xianyang 712100, China
    Key Laboratory of Agriculture Soil and Water Engineering in Arid and Semiarid Areas, North A&F University, Ministry of Education, Xianyang 712100, China
    These authors contributed equally to this work.)

  • Zezhou Cao

    (Institute of Water Resources and Hydropower Research, Northwest A&F University, Xianyang 712100, China
    Key Laboratory of Agriculture Soil and Water Engineering in Arid and Semiarid Areas, North A&F University, Ministry of Education, Xianyang 712100, China
    These authors contributed equally to this work.)

  • Kuangqing Hu

    (Institute of Water Resources and Hydropower Research, Northwest A&F University, Xianyang 712100, China
    Key Laboratory of Agriculture Soil and Water Engineering in Arid and Semiarid Areas, North A&F University, Ministry of Education, Xianyang 712100, China)

  • Diyi Chen

    (Institute of Water Resources and Hydropower Research, Northwest A&F University, Xianyang 712100, China
    Key Laboratory of Agriculture Soil and Water Engineering in Arid and Semiarid Areas, North A&F University, Ministry of Education, Xianyang 712100, China)

Abstract

Primary frequency regulation (PFR) is a crucial operating condition for PSPs to realise frequency modulation, and the effectiveness of PFR is significant to the stability of power system frequency. Several challenges and risks have been presented in the PFR process for conventional PSPs, especially for those which run in the isolated grid, such as water inertia, negative damping of speed governor and ultra-low frequency oscillation (ULFO). Variable-speed pumped storage plants (VSPSPs) have the potential to overcome the negative impacts on regulation performance caused by hydraulic factors, due to the advantages of rapid power regulation and independent active power control from turbine output. In this paper, the primary task is to conduct a comprehensive assessment for PFR performance of VSPSPs in isolated power systems. Initially, the hydraulic–mechanical–electrical numerical models are established. Secondly, the rotational speed stability of the pump-turbine is quantified and the advantages of VSUs in suppressing ULFO are assessed. Relevant results reveal that the performance of VSUs is better than that of FSUs in the regulation process. Finally, assessments of frequency regulation performance under various scenarios are conducted with four indicators (standard deviation of power differences, power regulation time delay, settling time and overshoot).

Suggested Citation

  • Sha Li & Zezhou Cao & Kuangqing Hu & Diyi Chen, 2023. "Performance Assessment for Primary Frequency Regulation of Variable-Speed Pumped Storage Plant in Isolated Power Systems," Energies, MDPI, vol. 16(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1238-:d:1044892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iliev, Igor & Trivedi, Chirag & Dahlhaug, Ole Gunnar, 2019. "Variable-speed operation of Francis turbines: A review of the perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 109-121.
    2. Alizadeh Bidgoli, Mohsen & Yang, Weijia & Ahmadian, Ali, 2020. "DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance," Renewable Energy, Elsevier, vol. 159(C), pages 72-86.
    3. Martínez-Lucas, Guillermo & Pérez-Díaz, Juan I. & Chazarra, Manuel & Sarasúa, José I. & Cavazzini, Giovanna & Pavesi, Giorgio & Ardizzon, Guido, 2019. "Risk of penstock fatigue in pumped-storage power plants operating with variable speed in pumping mode," Renewable Energy, Elsevier, vol. 133(C), pages 636-646.
    4. Tarroja, Brian & Forrest, Kate & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott, 2019. "Implications of hydropower variability from climate change for a future, highly-renewable electric grid in California," Applied Energy, Elsevier, vol. 237(C), pages 353-366.
    5. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    6. Guo, Wencheng & Yang, Jiandong, 2018. "Modeling and dynamic response control for primary frequency regulation of hydro-turbine governing system with surge tank," Renewable Energy, Elsevier, vol. 121(C), pages 173-187.
    7. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    9. Sijia Wang & Xiangyu Wu & Gang Chen & Yin Xu, 2020. "Small-Signal Stability Analysis of Photovoltaic-Hydro Integrated Systems on Ultra-Low Frequency Oscillation," Energies, MDPI, vol. 13(4), pages 1-17, February.
    10. Ding, Ziyu & Wen, Xin & Tan, Qiaofeng & Yang, Tiantian & Fang, Guohua & Lei, Xiaohui & Zhang, Yu & Wang, Hao, 2021. "A forecast-driven decision-making model for long-term operation of a hydro-wind-photovoltaic hybrid system," Applied Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    2. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Gao, Chunyang & Yu, Xiangyang & Nan, Haipeng & Men, Chuangshe & Zhao, Peiyu & Cai, Qingsen & Fu, Jianing, 2021. "Stability and dynamic analysis of doubly-fed variable speed pump turbine governing system based on Hopf bifurcation theory," Renewable Energy, Elsevier, vol. 175(C), pages 568-579.
    4. Eva Bílková & Jiří Souček & Martin Kantor & Roman Kubíček & Petr Nowak, 2023. "Variable-Speed Propeller Turbine for Small Hydropower Applications," Energies, MDPI, vol. 16(9), pages 1-14, April.
    5. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
    6. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    7. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. He Wang & Zhijie Ma, 2021. "Regulation Characteristics and Load Optimization of Pump-Turbine in Variable-Speed Operation," Energies, MDPI, vol. 14(24), pages 1-21, December.
    10. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    11. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    12. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.
    13. Liu, Dong & Li, Chaoshun & Malik, O.P., 2021. "Nonlinear modeling and multi-scale damping characteristics of hydro-turbine regulation systems under complex variable hydraulic and electrical network structures," Applied Energy, Elsevier, vol. 293(C).
    14. Zhu, Qianming & Qi, Yinke & Huang, Diangui, 2023. "Numerical simulation of performance of traveling wave pump-turbine at different wave speeds in pumping mode," Renewable Energy, Elsevier, vol. 203(C), pages 485-494.
    15. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    16. Dariusz Borkowski & Marek Majdak, 2020. "Small Hydropower Plants with Variable Speed Operation—An Optimal Operation Curve Determination," Energies, MDPI, vol. 13(23), pages 1-20, November.
    17. Frank A Plua & Francisco-Javier Sánchez-Romero & Victor Hidalgo & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "New Expressions to Apply the Variation Operation Strategy in Engineering Tools Using Pumps Working as Turbines," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
    18. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    19. Makhdoomi, Sina & Askarzadeh, Alireza, 2020. "Daily performance optimization of a grid-connected hybrid system composed of photovoltaic and pumped hydro storage (PV/PHS)," Renewable Energy, Elsevier, vol. 159(C), pages 272-285.
    20. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1238-:d:1044892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.