IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003517.html
   My bibliography  Save this article

Rotating stall mechanism of pump-turbine in hump region: An insight into vortex evolution

Author

Listed:
  • Xu, Lianchen
  • Kan, Kan
  • Zheng, Yuan
  • Liu, Demin
  • Binama, Maxime
  • Xu, Zhe
  • Yan, Xiaotong
  • Guo, Mengqi
  • Chen, Huixiang

Abstract

Reversible Pump Turbines (RPTs) are primarily used in pumped-storage hydropower plants, enabling the facility to function in both pump and turbine modes. Under pump mode, the “hump region” refers to a characteristic range of flow conditions that are marked by large flow instabilities. These can eventually jeopardize the performance and operational safety of the plant. This study, through numerical simulation and model testing methods, examined the flow separation and rotating stall evolution mechanisms in the vaneless space and guide vane regions, for an RPT whose operating conditions are within the hump region. Applying the entropy production theory and Rortex method as energy loss and vortex identification methods, study results have shown that energy losses are concentrated at the guide vane's leading edge and vicinal zones, as well as within the draft tube. The energy loss within inter-guide vane flow passages is found to mainly take source from the experienced rigid water rotation at the same zones. Moreover, radial velocity differences, which are in turn linked to a non-uniform flow distribution among inter-guide vane passages, are believed to have considerably contributed the emergence of the rotating stall. Finally, the analysis of vortex flow evolution revealed the importance of flow separation-linked changes in entropy generation term in identifying the vortex evolution mechanism.

Suggested Citation

  • Xu, Lianchen & Kan, Kan & Zheng, Yuan & Liu, Demin & Binama, Maxime & Xu, Zhe & Yan, Xiaotong & Guo, Mengqi & Chen, Huixiang, 2024. "Rotating stall mechanism of pump-turbine in hump region: An insight into vortex evolution," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003517
    DOI: 10.1016/j.energy.2024.130579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    2. Kan, Kan & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Binama, Maxime & Dai, Jing, 2021. "Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model," Renewable Energy, Elsevier, vol. 164(C), pages 109-121.
    3. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2018. "Flow measurements around guide vanes of Francis turbine: A PIV approach," Renewable Energy, Elsevier, vol. 126(C), pages 177-188.
    4. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu & Qin, Daqing, 2018. "Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model," Renewable Energy, Elsevier, vol. 115(C), pages 433-447.
    5. Yang, Fan & Li, Zhongbin & Yuan, Yao & Lin, Zhikang & Zhou, Guangxin & Ji, Qingwei, 2022. "Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine," Renewable Energy, Elsevier, vol. 196(C), pages 856-869.
    6. Yan, Xiaotong & Kan, Kan & Zheng, Yuan & Xu, Zhe & Rossi, Mosè & Xu, Lianchen & Chen, Huixiang, 2024. "The vortex dynamics characteristics in a pump-turbine: A rigid vorticity analysis while varying guide vane openings in turbine mode," Energy, Elsevier, vol. 289(C).
    7. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Kan, Kan & Yang, Zixuan & Lyu, Pin & Zheng, Yuan & Shen, Lian, 2021. "Numerical study of turbulent flow past a rotating axial-flow pump based on a level-set immersed boundary method," Renewable Energy, Elsevier, vol. 168(C), pages 960-971.
    9. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
    10. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    11. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    12. Zhang, Fangfang & Fang, Mingkun & Pan, Jiale & Tao, Ran & Zhu, Di & Liu, Weichao & Xiao, Ruofu, 2023. "Guide vane profile optimization of pump-turbine for grid connection performance improvement," Energy, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
    2. Song, Xijie & Luo, Yongyao & Wang, Zhengwei, 2024. "Mechanism of the influence of sand on the energy dissipation inside the hydraulic turbine under sediment erosion condition," Energy, Elsevier, vol. 294(C).
    3. Mu, Tong & Zhang, Rui & Xu, Hui & Fei, Zhaodan & Feng, Jiangang & Jin, Yan & Zheng, Yuan, 2023. "Improvement of energy performance of the axial-flow pump by groove flow control technology based on the entropy theory," Energy, Elsevier, vol. 274(C).
    4. Ye, Weixiang & Geng, Chen & Luo, Xianwu, 2022. "Unstable flow characteristics in vaneless region with emphasis on the rotor-stator interaction for a pump turbine at pump mode using large runner blade lean," Renewable Energy, Elsevier, vol. 185(C), pages 1343-1361.
    5. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    6. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    7. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    8. Pei, Ji & Shen, Jiawei & Wang, Wenjie & Yuan, Shouqi & Zhao, Jiantao, 2024. "Evaluating hydraulic dissipation in a reversible mixed-flow pump for micro-pumped hydro storage based on entropy production theory," Renewable Energy, Elsevier, vol. 225(C).
    9. Xinfeng Ge & Jing Zhang & Jian Zhang & Demin Liu & Yuan Zheng & Huixiang Chen, 2022. "Review of Research on the Three-Dimensional Transition Process of Large-Scale Low-Lift Pump," Energies, MDPI, vol. 15(22), pages 1-34, November.
    10. Zhao, Kunjie & Xu, Yanhe & Guo, Pengcheng & Qian, Zhongdong & Zhang, Yongchuan & Liu, Wei, 2022. "Multi-scale oscillation characteristics and stability analysis of pumped-storage unit under primary frequency regulation condition with low water head grid-connected," Renewable Energy, Elsevier, vol. 189(C), pages 1102-1119.
    11. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    12. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    13. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    14. Lin, Yanpi & Li, Xiaojun & Zhu, Zuchao & Wang, Xunming & Lin, Tong & Cao, Haibin, 2022. "An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge," Energy, Elsevier, vol. 246(C).
    15. Sun, Longyue & Pan, Qiang & Zhang, Desheng & Zhao, Ruijie & Esch, B.P.M.(Bart) van, 2022. "Numerical study of the energy loss in the bulb tubular pump system focusing on the off-design conditions based on combined energy analysis methods," Energy, Elsevier, vol. 258(C).
    16. Qigang Zhu & Yifan Liu & Ming Liu & Shuaishuai Zhang & Guangyang Chen & Hao Meng, 2021. "Intelligent Planning and Research on Urban Traffic Congestion," Future Internet, MDPI, vol. 13(11), pages 1-17, November.
    17. Yu Chen & Jianxu Zhou & Bryan Karney & Qiang Guo & Jian Zhang, 2022. "Analytical Implementation and Prediction of Hydraulic Characteristics for a Francis Turbine Runner Operated at BEP," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    18. Kan Kan & Qingying Zhang & Yuan Zheng & Hui Xu & Zhe Xu & Jianwei Zhai & Alexis Muhirwa, 2022. "Investigation into Influence of Wall Roughness on the Hydraulic Characteristics of an Axial Flow Pump as Turbine," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    19. Li, Wei & Huang, Yuxin & Ji, Leilei & Ma, Lingling & Agarwal, Ramesh K. & Awais, Muhammad, 2023. "Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump," Energy, Elsevier, vol. 271(C).
    20. Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.