IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2355-d540487.html
   My bibliography  Save this article

The Influence of a Photovoltaic Micro-Installation on the Low-Frequency Parameters of Electricity at PCC and Its Impact on the Thermal Characteristics of Selected Devices

Author

Listed:
  • Stanislaw Galla

    (Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-288 Gdansk, Poland)

  • Miroslaw Wlas

    (Departments of Electric Drivers and Energy Conversions, Faculty of Electrical and Control Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-288 Gdansk, Poland)

Abstract

This manuscript illustrates the measurement results of parameters describing the quality of energy at the PCC (point of common coupling) of a photovoltaic micro-installation that can significantly affect devices in the same power grid. The analyses reflecting heating of selected devices used in domestic installations, which were performed in an isolated laboratory environment, are also indicated. The conducted study aimed at checking the thermal characteristics of the chosen equipment, i.e., AC/DC power supply, LED and fluorescent light sources, a step-down transformer at synergistically higher voltage harmonics and constant component in the network voltage. The tests were carried out at the disturbance levels recorded at the site of the photovoltaic micro-installation. The conducted tests aimed at indicating the presence of an increased level of synergetic disturbances in the vicinity of micro-photovoltaic installations. Based on the research, recommendations were made for photovoltaic micro-installations.

Suggested Citation

  • Stanislaw Galla & Miroslaw Wlas, 2021. "The Influence of a Photovoltaic Micro-Installation on the Low-Frequency Parameters of Electricity at PCC and Its Impact on the Thermal Characteristics of Selected Devices," Energies, MDPI, vol. 14(9), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2355-:d:540487
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Temitayo O. Olowu & Aditya Sundararajan & Masood Moghaddami & Arif I. Sarwat, 2018. "Future Challenges and Mitigation Methods for High Photovoltaic Penetration: A Survey," Energies, MDPI, vol. 11(7), pages 1-32, July.
    2. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksander Chudy & Piotr Hołyszko & Paweł Mazurek, 2022. "Fast Charging of an Electric Bus Fleet and Its Impact on the Power Quality Based on On-Site Measurements," Energies, MDPI, vol. 15(15), pages 1-16, July.
    2. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    2. Mohamed Maher & Shady H. E. Abdel Aleem & Ahmed M. Ibrahim & Adel El-Shahat, 2022. "Novel Mathematical Design of Triple-Tuned Filters for Harmonics Distortion Mitigation," Energies, MDPI, vol. 16(1), pages 1-22, December.
    3. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    4. Tüysüz, Metin & Okumuş, Halil Ibrahim & Aymaz, Şeyma & Çavdar, Bora, 2024. "Real-time application of a demand-side management strategy using optimization algorithms," Applied Energy, Elsevier, vol. 368(C).
    5. Pierro, Marco & Perez, Richard & Perez, Marc & Prina, Matteo Giacomo & Moser, David & Cornaro, Cristina, 2021. "Italian protocol for massive solar integration: From solar imbalance regulation to firm 24/365 solar generation," Renewable Energy, Elsevier, vol. 169(C), pages 425-436.
    6. Anjan Debnath & Temitayo O. Olowu & Imtiaz Parvez & Md Golam Dastgir & Arif Sarwat, 2020. "A Novel Module Independent Straight Line-Based Fast Maximum Power Point Tracking Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 13(12), pages 1-15, June.
    7. Visser, Lennard & AlSkaif, Tarek & van Sark, Wilfried, 2022. "Operational day-ahead solar power forecasting for aggregated PV systems with a varying spatial distribution," Renewable Energy, Elsevier, vol. 183(C), pages 267-282.
    8. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    9. Ming-Yuan Chiang & Shyh-Chour Huang & Te-Ching Hsiao & Tung-Sheng Zhan & Ju-Chen Hou, 2022. "Optimal Sizing and Location of Photovoltaic Generation and Energy Storage Systems in an Unbalanced Distribution System," Energies, MDPI, vol. 15(18), pages 1-22, September.
    10. Nicholas D. de Andrade & Ruben B. Godoy & Edson A. Batista & Moacyr A. G. de Brito & Rafael L. R. Soares, 2022. "Embedded FPGA Controllers for Current Compensation Based on Modern Power Theories," Energies, MDPI, vol. 15(17), pages 1-17, August.
    11. P. Abirami & C. N. Ravi, 2022. "Enhancing grid stability by maintaining power quality in distribution network using FOPID and ANN controlled shunt active filter," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7551-7578, June.
    12. Rosa Anna Mastromauro, 2020. "Grid Synchronization and Islanding Detection Methods for Single-Stage Photovoltaic Systems," Energies, MDPI, vol. 13(13), pages 1-25, July.
    13. Md. Shouquat Hossain & Naseer Abboodi Madlool & Ali Wadi Al-Fatlawi & Mamdouh El Haj Assad, 2023. "High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement," Sustainability, MDPI, vol. 15(2), pages 1-25, January.
    14. Oluwaseun M. Akeyo & Aron Patrick & Dan M. Ionel, 2020. "Study of Renewable Energy Penetration on a Benchmark Generation and Transmission System," Energies, MDPI, vol. 14(1), pages 1-14, December.
    15. Krzysztof Kołek & Andrzej Firlit & Krzysztof Piątek & Krzysztof Chmielowiec, 2021. "Analysis of the Practical Implementation of Flicker Measurement Coprocessor for AMI Meters," Energies, MDPI, vol. 14(6), pages 1-17, March.
    16. Krzysztof Kołek & Andrzej Firlit, 2021. "A New Optimal Current Controller for a Three-Phase Shunt Active Power Filter Based on Karush–Kuhn–Tucker Conditions," Energies, MDPI, vol. 14(19), pages 1-17, October.
    17. Javier Huertas Tato & Miguel Centeno Brito, 2018. "Using Smart Persistence and Random Forests to Predict Photovoltaic Energy Production," Energies, MDPI, vol. 12(1), pages 1-12, December.
    18. Shab Gbémou & Julien Eynard & Stéphane Thil & Emmanuel Guillot & Stéphane Grieu, 2021. "A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting," Energies, MDPI, vol. 14(11), pages 1-23, May.
    19. Muqaddas Elahi & Hafiz Muhammad Ashraf & Chul-Hwan Kim, 2022. "An Improved Partial Shading Detection Strategy Based on Chimp Optimization Algorithm to Find Global Maximum Power Point of Solar Array System," Energies, MDPI, vol. 15(4), pages 1-26, February.
    20. Minh Ly Duc & Petr Bilik & Radek Martinek, 2023. "Harmonics Signal Feature Extraction Techniques: A Review," Mathematics, MDPI, vol. 11(8), pages 1-36, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2355-:d:540487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.