IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919314138.html
   My bibliography  Save this article

A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition

Author

Listed:
  • Yang, Jufeng
  • Cai, Yingfeng
  • Pan, Chaofeng
  • Mi, Chris

Abstract

A constant-current constant-voltage (CCCV) charge protocol is commonly used for lithium-ion batteries. The dynamic characteristic of the constant-voltage (CV) charging current is discovered to be related to battery aging. In order to quantitatively describe the load current during the CV charging period, an equivalent circuit model (ECM) based on the resistor-inductor (RL) network is proposed in this paper. Motivated by the current expression derived based on the conventional resistor–capacitor (RC) network-based ECM, an RL network-based ECM is developed to characterize the CV charging current. Then, the parallel-connected RL networks are employed to improve the model fidelity. The test data of four lithium iron phosphate (LiFePO4) batteries in different aging states are employed to validate the proposed model. Comparative results show that the proposed 2nd-order ECM is the best choice, considering both the model accuracy and complexity. In addition, a simplified 2nd-order model is proposed, achieving a satisfactory accuracy with only three model parameters to be identified. Therefore, this model can be easily implemented in the battery management system (BMS).

Suggested Citation

  • Yang, Jufeng & Cai, Yingfeng & Pan, Chaofeng & Mi, Chris, 2019. "A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314138
    DOI: 10.1016/j.apenergy.2019.113726
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919314138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yujie & Liu, Chang & Pan, Rui & Chen, Zonghai, 2017. "Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator," Energy, Elsevier, vol. 121(C), pages 739-750.
    2. Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
    3. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2014. "A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries," Applied Energy, Elsevier, vol. 135(C), pages 81-87.
    4. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    5. Xiao Yang & Long Chen & Xing Xu & Wei Wang & Qiling Xu & Yuzhen Lin & Zhiguang Zhou, 2017. "Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization," Energies, MDPI, vol. 10(11), pages 1-16, November.
    6. Wang, Limei & Pan, Chaofeng & Liu, Liang & Cheng, Yong & Zhao, Xiuliang, 2016. "On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis," Applied Energy, Elsevier, vol. 168(C), pages 465-472.
    7. Farmann, Alexander & Sauer, Dirk Uwe, 2018. "Comparative study of reduced order equivalent circuit models for on-board state-of-available-power prediction of lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 225(C), pages 1102-1122.
    8. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    2. Mehta, Rohit & Gupta, Amit, 2024. "Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Yang, Jufeng & Li, Xin & Sun, Xiaodong & Cai, Yingfeng & Mi, Chris, 2023. "An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time," Energy, Elsevier, vol. 263(PB).
    4. Yao, Jiachi & Chang, Zhonghao & Han, Te & Tian, Jingpeng, 2024. "Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    4. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    5. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    6. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    7. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    8. Kim, Seongyoon & Choi, Yun Young & Choi, Jung-Il, 2022. "Impedance-based capacity estimation for lithium-ion batteries using generative adversarial network," Applied Energy, Elsevier, vol. 308(C).
    9. Mina Naguib & Aashit Rathore & Nathan Emery & Shiva Ghasemi & Ryan Ahmed, 2023. "Robust Electro-Thermal Modeling of Lithium-Ion Batteries for Electrified Vehicles Applications," Energies, MDPI, vol. 16(16), pages 1-20, August.
    10. Xiaoyu Li & Xing Shu & Jiangwei Shen & Renxin Xiao & Wensheng Yan & Zheng Chen, 2017. "An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-15, May.
    11. Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
    12. Yigeng Huangfu & Jiani Xu & Dongdong Zhao & Yuntian Liu & Fei Gao, 2018. "A Novel Battery State of Charge Estimation Method Based on a Super-Twisting Sliding Mode Observer," Energies, MDPI, vol. 11(5), pages 1-21, May.
    13. Li, Kailing & Xie, Naiming, 2024. "Battery health prognostics based on improved incremental capacity using a hybrid grey modelling and Gaussian process regression," Energy, Elsevier, vol. 303(C).
    14. Liu, Chang & Wang, Yujie & Chen, Zonghai, 2019. "Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system," Energy, Elsevier, vol. 166(C), pages 796-806.
    15. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
    16. Farmann, Alexander & Sauer, Dirk Uwe, 2018. "Comparative study of reduced order equivalent circuit models for on-board state-of-available-power prediction of lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 225(C), pages 1102-1122.
    17. Song, Ziyou & Hou, Jun & Li, Xuefeng & Wu, Xiaogang & Hu, Xiaosong & Hofmann, Heath & Sun, Jing, 2020. "The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection," Energy, Elsevier, vol. 193(C).
    18. Zheng, Yuejiu & Qin, Chao & Lai, Xin & Han, Xuebing & Xie, Yi, 2019. "A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Yao, Jiachi & Chang, Zhonghao & Han, Te & Tian, Jingpeng, 2024. "Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems," Energy, Elsevier, vol. 294(C).
    20. Bi, Yalan & Choe, Song-Yul, 2020. "An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O2/Carbon battery using a reduced-order electrochemical model," Applied Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.