IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1366-d509161.html
   My bibliography  Save this article

Energy Consumption Structure and Its Improvement of Low-Lifting Capacity Scissor Lift

Author

Listed:
  • Lukasz Stawinski

    (Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15 Street, 90-924 Lodz, Poland)

  • Jakub Zaczynski

    (Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15 Street, 90-924 Lodz, Poland)

  • Adrian Morawiec

    (Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15 Street, 90-924 Lodz, Poland)

  • Justyna Skowronska

    (Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15 Street, 90-924 Lodz, Poland)

  • Andrzej Kosucki

    (Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15 Street, 90-924 Lodz, Poland)

Abstract

The article presents the experimental investigation of low-lifting capacity hydraulic scissor lift energy consumption. The analysis is based on experimental tests of two individual drives of the scissor lift: the conventional one and the variable-speed electro-hydraulic one. The investigation focuses on the study of the total energy consumption for lifting and lowering the scissor lift with different masses of transported cargo and also power consumptions of each element supplying these systems. Particular attention was paid to the significant impact of power supply on each control component as the main factor of reduction in the energetic efficiency of the low-lifting capacity scissor lift. A comparison of both drives indicated that the mass of transported cargo has a significant influence on the choice of the drive used. Results of the research show that significant energetic savings are obtained, as the modernized propulsion system consumes 67% energy of the standard one. A decrease in the percentage of energy losses with the increase in the mass handled led to the conclusion that the enhancement of propulsion systems in scissor lifts should be especially considered in machines carrying big loads.

Suggested Citation

  • Lukasz Stawinski & Jakub Zaczynski & Adrian Morawiec & Justyna Skowronska & Andrzej Kosucki, 2021. "Energy Consumption Structure and Its Improvement of Low-Lifting Capacity Scissor Lift," Energies, MDPI, vol. 14(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1366-:d:509161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1366/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1366/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Qihuai & Lin, Tianliang & Ren, Haoling & Fu, Shengjie, 2019. "Novel potential energy regeneration systems for hybrid hydraulic excavators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 130-145.
    2. Latas, Waldemar & Stojek, Jerzy, 2018. "A new type of hydrokinetic accumulator and its simulation in hydraulic lift with energy recovery system," Energy, Elsevier, vol. 153(C), pages 836-848.
    3. Hao, Yunxiao & Quan, Long & Cheng, Hang & Xia, Lianpeng & Ge, Lei & Zhao, Bin, 2018. "Potential energy directly conversion and utilization methods used for heavy duty lifting machinery," Energy, Elsevier, vol. 155(C), pages 242-251.
    4. Kwangman An & Hyehyun Kang & Youngkuk An & Jinil Park & Jonghwa Lee, 2020. "Methodology of Excavator System Energy Flow-Down," Energies, MDPI, vol. 13(4), pages 1-19, February.
    5. Patrick M. Stump & Nathan Keller & Andrea Vacca, 2019. "Energy Management of Low-Pressure Systems Utilizing Pump-Unloading Valve and Accumulator," Energies, MDPI, vol. 12(23), pages 1-17, November.
    6. Teemu Koitto & Heikki Kauranne & Olof Calonius & Tatiana Minav & Matti Pietola, 2019. "Experimental Study on Fast and Energy-Efficient Direct Driven Hydraulic Actuator Unit," Energies, MDPI, vol. 12(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukasz Stawinski & Justyna Skowronska & Andrzej Kosucki, 2021. "Energy Efficiency and Limitations of the Methods of Controlling the Hydraulic Cylinder Piston Rod under Various Load Conditions," Energies, MDPI, vol. 14(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiansong Li & Jiyun Zhao & Xiaochun Zhang, 2020. "A Novel Energy Recovery System Integrating Flywheel and Flow Regeneration for a Hydraulic Excavator Boom System," Energies, MDPI, vol. 13(2), pages 1-25, January.
    2. Wang, He & Chen, Zhen & Huang, Jiahai, 2021. "Improvement of vibration frequency and energy efficiency in the uniaxial electro-hydraulic shaking tables for sinusoidal vibration waveform," Energy, Elsevier, vol. 218(C).
    3. Do, Tri Cuong & Dang, Tri Dung & Dinh, Truong Quang & Ahn, Kyoung Kwan, 2021. "Developments in energy regeneration technologies for hydraulic excavators: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
    5. Hyukjoon Kwon & Monika Ivantysynova, 2020. "System Characteristics Analysis for Energy Management of Power-Split Hydraulic Hybrids," Energies, MDPI, vol. 13(7), pages 1-23, April.
    6. Tan, Lisha & He, Xiangyu & Xiao, Guangxin & Jiang, Mengjun & Yuan, Yulin, 2022. "Design and energy analysis of novel hydraulic regenerative potential energy systems," Energy, Elsevier, vol. 249(C).
    7. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    8. Yan, Xiaopeng & Chen, Baijin, 2021. "Analysis of a novel energy-efficient system with 3-D vertical structure for hydraulic press," Energy, Elsevier, vol. 218(C).
    9. Thanh Ha Nguyen & Tri Cuong Do & Van Du Phan & Kyoung Kwan Ahn, 2023. "Working Performance Improvement of a Novel Independent Metering Valve System by Using a Neural Network-Fractional Order-Proportional-Integral-Derivative Controller," Mathematics, MDPI, vol. 11(23), pages 1-21, November.
    10. Do, Tri Cuong & Dinh, Truong Quang & Yu, Yingxiao & Ahn, Kyoung Kwan, 2023. "Innovative powertrain and advanced energy management strategy for hybrid hydraulic excavators," Energy, Elsevier, vol. 282(C).
    11. Gu, Zhengzhao & Feng, Kewen & Ge, Lei & Quan, Long, 2023. "Dynamic modeling and optimization of organic Rankine cycle in the waste heat recovery of the hydraulic system," Energy, Elsevier, vol. 263(PB).
    12. Gong, Jun & Zhang, Daqing & Guo, yong & Liu, Changsheng & Zhao, Yuming & Hu, Peng & Quan, weicai, 2019. "Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system," Applied Energy, Elsevier, vol. 233, pages 724-734.
    13. Yang, Jian & Liu, Bo & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin, 2023. "Multi-parameter controlled mechatronics-electro-hydraulic power coupling electric vehicle based on active energy regulation," Energy, Elsevier, vol. 263(PC).
    14. Yan, Xiaopeng & Chen, Baijin & Yin, Fanglong & Ji, Hui & Ma, Zhonghai & Nie, Songlin, 2023. "Energy optimization of main hydraulic system in a forging press by simulation and experimental methods," Energy, Elsevier, vol. 277(C).
    15. Mendoza Castellanos, Luis Sebastián & Galindo Noguera, Ana Lisbeth & Gutiérrez Velásquez, Elkin I. & Caballero, Gaylord Enrique Carrillo & Silva Lora, Electo Eduardo & Melian Cobas, Vladimir Rafael, 2020. "Mathematical modeling of a system composed of parabolic trough solar collectors integrated with a hydraulic energy storage system," Energy, Elsevier, vol. 208(C).
    16. Nie, Chunhui & Shao, Yimin & Mechefske, Chris K. & Cheng, Min & Wang, Liming, 2021. "Power distribution method for a parallel hydraulic-pneumatic hybrid system using a piecewise function," Energy, Elsevier, vol. 233(C).
    17. Eichfelder, Sebastian & Kluska, Mike & Knaisch, Jonas & Selle, Juliane, 2021. "Senkung der Unternehmenssteuerlast versus Förderung von Investitionen: Was ist die bessere Strategie zur Förderung der Standortattraktivität Deutschlands?," arqus Discussion Papers in Quantitative Tax Research 263, arqus - Arbeitskreis Quantitative Steuerlehre.
    18. Lin, Tianliang & Lin, Yuanzheng & Ren, Haoling & Chen, Haibin & Li, Zhongshen & Chen, Qihuai, 2021. "A double variable control load sensing system for electric hydraulic excavator," Energy, Elsevier, vol. 223(C).
    19. Eichfelder, Sebastian & Kluska, Mike & Knaisch, Jonas & Selle, Juliane, 2021. "Senkung der Unternehmenssteuerlast versus Förderung von Investitionen: Was ist die bessere Strategie zur Förderung der Standortattraktivität Deutschlands?," arqus Discussion Papers in Quantitative Tax Research 266, arqus - Arbeitskreis Quantitative Steuerlehre.
    20. Kwon, Hyukjoon & Ivantysynova, Monika, 2021. "Experimental and theoretical studies on energy characteristics of hydraulic hybrids for thermal management," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1366-:d:509161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.