IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5724-d1207537.html
   My bibliography  Save this article

Direct Tilt Controller Design with Disturbance Compensation and Implementation for a Narrow Tilting Electric Vehicle

Author

Listed:
  • Mustafa Karamuk

    (Ford Otosan R&D Center, 34885 Istanbul, Turkey)

  • Orhan Behic Alankus

    (Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Tuzla Campus, 34959 Istanbul, Turkey)

Abstract

Three-wheeled electric city vehicles are becoming popular because they have lower cost and enable motorcycle driving feeling with electric powertrain performance. These vehicles need a driver assistant system, also known as an active tilting stability controller, to provide a safe cornering manoeuvre. Active tilt control methods are direct tilt control (DTC), steering tilt control (STC) and a combination of these methods. In this study, DTC system design with a servo motor actuator with simulation and experimental results are presented. State feedback control with pole placement design has been improved with disturbance compensation control. This novel controller structure enhances the response of DTC and enables a faster-tilting response. Simulation results are given up to 10 m/s speed. Experimental results of the developed method are given up to 3.05 m/s (11 km/h) speed on a three-wheeled electric vehicle. The speed control loop of the servo motor drive unit (SMDU) stabilizes the DTC system. In the state of the art, a proportional derivative controller is commonly used as a tilt controller. By including the speed control loop of SMDU in the tilt control system, the use of the derivative term can be eliminated. The stability effect of the speed control loop is shown by MATLAB analysis, simulations in Simulink and experimental step response test as well.

Suggested Citation

  • Mustafa Karamuk & Orhan Behic Alankus, 2023. "Direct Tilt Controller Design with Disturbance Compensation and Implementation for a Narrow Tilting Electric Vehicle," Energies, MDPI, vol. 16(15), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5724-:d:1207537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Rajamani & J. Gohl & L. Alexander & P. Starr, 2003. "Dynamics of Narrow Tilting Vehicles," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 9(2), pages 209-231, June.
    2. Teemu Koitto & Heikki Kauranne & Olof Calonius & Tatiana Minav & Matti Pietola, 2019. "Experimental Study on Fast and Energy-Efficient Direct Driven Hydraulic Actuator Unit," Energies, MDPI, vol. 12(8), pages 1-17, April.
    3. Mustafa Karamuk & Orhan Behic Alankus, 2022. "Development and Experimental Implementation of Active Tilt Control System Using a Servo Motor Actuator for Narrow Tilting Electric Vehicle," Energies, MDPI, vol. 15(6), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Karamuk & Orhan Behic Alankus, 2022. "Development and Experimental Implementation of Active Tilt Control System Using a Servo Motor Actuator for Narrow Tilting Electric Vehicle," Energies, MDPI, vol. 15(6), pages 1-28, March.
    2. Lukasz Stawinski & Jakub Zaczynski & Adrian Morawiec & Justyna Skowronska & Andrzej Kosucki, 2021. "Energy Consumption Structure and Its Improvement of Low-Lifting Capacity Scissor Lift," Energies, MDPI, vol. 14(5), pages 1-14, March.
    3. Jialing Yao & Meng Wang & Zhihong Li & Yunyi Jia, 2021. "Research on Model Predictive Control for Automobile Active Tilt Based on Active Suspension," Energies, MDPI, vol. 14(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5724-:d:1207537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.